Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (10): 3300-3306.doi: 10.16285/j.rsm.2020.0151

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on solidified loess by microbes and reactive magnesium oxide

HUANG Tao1, FANG Xiang-wei2, ZHANG Wei1, SHEN Chun-ni3, LEI Yu-long1   

  1. 1. Department of Military Installations, Army Logistics University of PLA, Chongqing 401311, China; 2. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 3. School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China
  • Received:2020-02-20 Revised:2020-07-19 Online:2020-10-12 Published:2020-11-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51978103, 41831282) and the Military Logistics Research Program (CY114C022).

Abstract: The loess samples solidified by reactive magnesium oxide (MgO) and microbes are analyzed in this paper. Water content and unconfined compressive strength are measured, and X-ray diffraction (XRD) and scanning electron microscopy (SEM) are conducted on different samples to investigate the curing product and microstructure change with varying amount of reactive MgO, curing time duration, initial water content. The results show that the water content of solidified sample decreases with the increasing content of reactive MgO and the growing curing period. The unconfined compression strength increases with the increasing content of reactive MgO, and also increases with the growing curing period in general, but decreases slightly in the later period with the content of reactive MgO being 10% or 15%. With the increase of initial water content, the unconfined compressive strength of solidified samples decreases when the reactive MgO content is 5% or 10%. But it will first increase and then decrease while the amount of reactive MgO is 15% or 20%. The results of XRD and SEM tests show that the higher the content of reactive MgO, the more magnesium hydroxide remains. The hydrated magnesium carbonate produced by the reaction is swellable and cementitious, which can fill the gaps between the soil particles and cement the soil particles together.

Key words: loess, microbes, reactive magnesium oxide, water content, unconfined compression strength

CLC Number: 

  • TU 444
[1] XIONG Zhong-ming, LÜ Shi-hong, LI Yun-liang, ZHAO Qi-feng, LI Jin, TAN Shu-shun, ZHANG Xiang-rong, ZHU Yu-rong, JIANG Lei, YANG Qi-fan, ZHANG Ning-bo, ZHANG Zi-dong. Research on dynamic properties and energy dissipation of loess under passive confining pressure conditions [J]. Rock and Soil Mechanics, 2021, 42(3): 775-782.
[2] AN Ning, YAN Chang-gen, WANG Ya-chong, LAN Heng-xing, BAO Han, XU Jiang-bo, SHI Yu-ling, SUN Wei-feng, . Experimental study on anti-erosion performance of polypropylene fiber-reinforced loess [J]. Rock and Soil Mechanics, 2021, 42(2): 501-510.
[3] JI Wei-wei, KONG Gang-qiang, LIU Han-long, YANG Qing, . Field tests on thermal response characteristics of the tunnel invert in soft plastic loess area [J]. Rock and Soil Mechanics, 2021, 42(2): 558-564.
[4] LI Jian-dong, WANG Xu, ZHANG Yan-jie, JIANG Dai-jun, LIU De-ren, LI Sheng. Study of thermal moisture migration of unsaturated loess with water vapor [J]. Rock and Soil Mechanics, 2021, 42(1): 186-192.
[5] ZHENG Fang, SHAO Sheng-jun, SHE Fang-tao, YUAN Hao, . True triaxial shear tests of remolded loess under different matrix suctions [J]. Rock and Soil Mechanics, 2020, 41(S1): 156-162.
[6] CHU Feng, ZHANG Hong-gang, SHAO Sheng-jun, DENG Guo-hua, . Experimental study on mechanical deformation and corrosion resistance characteristics of loess reinforced with synthetic waste cloth fiber yarn [J]. Rock and Soil Mechanics, 2020, 41(S1): 394-403.
[7] LI Fu-xiu, WU Zhi-jian, YAN Wu-jian, ZHAO Duo-yin, . Research on dynamic response characteristics of loess tableland slopes based on shaking table test [J]. Rock and Soil Mechanics, 2020, 41(9): 2880-2890.
[8] ZHANG Ji-wen, MU Qing-yi, LIAO Hong-jian, LIU Fen-liang, . A soil freezing characteristic curve model for capturing void ratio and specific surface area effects [J]. Rock and Soil Mechanics, 2020, 41(9): 2913-2921.
[9] LUO Yi, ZHANG Jia-ming, ZHOU Zhi, CHIKHOTKIN Victor, MI Min, SHEN Jun, . Evolution law of critical moisture content of soil cracking under rainfall-evaporation conditions [J]. Rock and Soil Mechanics, 2020, 41(8): 2592-2600.
[10] NIU Li-si, ZHANG Ai-jun, WANG Yu-guo, REN Wen-yuan, ZHAO Jia-min, ZHAO Qing-yu, . Critical state characteristics of high soluble salt unsaturated undisturbed Ili loess [J]. Rock and Soil Mechanics, 2020, 41(8): 2647-2658.
[11] PAN Yong-liang, JIAN Wen-xing, LI Lin-jun, LIN Yu-qiu, TIAN Peng-fei. A study on the rainfall infiltration of granite residual soil slope with an improved Green-Ampt model [J]. Rock and Soil Mechanics, 2020, 41(8): 2685-2692.
[12] ZHANG Lei, HAI Wei-shen, GAN Hao, CAO Wei-ping, WANG Tie-hang, . Study on bearing behavior of flexible single pile subject to horizontal and uplift combined load [J]. Rock and Soil Mechanics, 2020, 41(7): 2261-2270.
[13] YANG Kai-xuan, HOU Tian-shun. Influence of compaction test types on compaction characteristics of EPS particles light weight soil [J]. Rock and Soil Mechanics, 2020, 41(6): 1971-1982.
[14] WEN Xin, HU Zhi-ping, ZHANG Xun, CHAI Shao-bo, LÜ Xin-bo, . Modified infiltration model for saturated-unsaturated loess based on Green-Ampt model and its parametric study [J]. Rock and Soil Mechanics, 2020, 41(6): 1991-2000.
[15] FANG Jin-jin, FENG Yi-xin, YU Yong-qiang, LI Zhen, LIN Zhi-bin. Wetting deformation characteristics of intact loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(4): 1235-1246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[2] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[3] HU Wei, HUANG Yi, LIU Zeng-rong. Testing and theoretical study of undrained shearing strength of saturated loess under cyclic loading[J]. , 2009, 30(10): 2996 -3000 .
[4] ZHU Yun-hua, LIU Xin-rong, SHU Zhi-le. [J]. , 2009, 30(10): 3215 -3216 .
[5] SUN Wen-jing,SUN De-an,MENG De-lin. Compression deformation characteristics of saturated bentonite and sand-bentonite mixtures[J]. , 2009, 30(11): 3249 -3255 .
[6] KONG Wei-xue,RUI Yong-qin,DONG Bao-di. Determination of dilatancy angle for geomaterials under non-associated flow rule[J]. , 2009, 30(11): 3278 -3282 .
[7] CHENG Tao,YAN Ke-qin,WANG Jing-tao. Study of numerical model for triaxial compression test on clay under different consolidation conditions[J]. , 2009, 30(11): 3352 -3356 .
[8] YU Li-yuan,LI Shu-cai,XU Bang-shu. Stability analysis of Zhoushan subsea tunnel with drill-and-blast construction method[J]. , 2009, 30(11): 3453 -3459 .
[9] YANG Chun-he1, MA Hong-ling1, LIU Jian-feng2-4. Study of deformation of rock salt under cycling loading and unloading[J]. , 2009, 30(12): 3562 -3568 .
[10] REN Song, JIANG De-yi, YANG Chun-he. Numerical simulation research on ground subsidence after salt cavern gas storage collapsing[J]. , 2009, 30(12): 3595 -3601 .