Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (9): 2880-2890.doi: 10.16285/j.rsm.2019.2060

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on dynamic response characteristics of loess tableland slopes based on shaking table test

LI Fu-xiu1, WU Zhi-jian2, YAN Wu-jian1, ZHAO Duo-yin3   

  1. 1. Key Laboratory of Loess Earthquake Engineering, Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou, Gansu 730000, China; 2. College of Transportation Science & Engineering, Nanjing Tech. University, Nanjing, Jiangsu 210009, China; 3. Chengdu Surveying Geotechnical Research Institute Co. Ltd. of MCC, Chengdu, Sichuan 610023, China
  • Received:2019-12-09 Revised:2020-04-09 Online:2020-09-11 Published:2020-10-20
  • Supported by:
    This work was supported by the National Earthquake Science Joint Foundation of China(U1939209), the National Natural Science Foundation of China(41472297) and the Scientific Research Foundation for Introducing Talent of Nanjing Tech. University.

Abstract: Based on the typical loess plateau slope of Kongtong district, Pingliang city, a 1:25 large-scale shaking table test is designed and accomplished using the conceptual model of the slopes with or without cracks. On the premise of satisfying the similarity principle, the dynamic response characteristics of model slopes of two kinds of structures are analyzed by inputting seismic waves in horizontal direction and vertical direction with different amplitudes. Results show that the horizontal and vertical seismic waves have obvious nonlinear amplification along the slope surface and the internal vertical direction, which reach the maximum value at the top of the slope. Under the horizontal seismic waves with the same amplitude, the acceleration amplification coefficient of the slope surface and section 4 are greater than that of the slope without crack at the same elevation in the middle and upper part of the slope, while in section 1, the amplification coefficient of the crack slope is smaller than that of the crack-free slope. After the seismic wave propagates through the slope soil, the predominant frequency changes significantly. With the increase of elevation, the slope will manifest selective amplification on middle and high frequency bands, which is more obvious on the side of fissure slope. Moreover, as the amplitude of seismic wave increases, the superior frequency transfers to the low frequency direction. However, the remarkable frequency attenuation is not obvious under the vertical seismic wave.

Key words: loess tableland slope, shaking table test, crack, acceleration dynamic response, spectrum analysis

CLC Number: 

  • TU411
[1] ZHENG Hong, ZHANG Tan, WANG Qiu-sheng. One package of schemes for some difficult issues in finite element plasticity analysis [J]. Rock and Soil Mechanics, 2021, 42(2): 301-314.
[2] LAI Tian-wen, LEI Hao, WU Zhi-xin, WU Hong-gang, . Shaking table test study on basalt fiber reinforced plastics in high slope protection [J]. Rock and Soil Mechanics, 2021, 42(2): 390-400.
[3] XU Chao, LUO Min-min, REN Fei-fan, SHEN Pan-pan, YANG Zi-fan. Experimental study on seismic behaviour of reinforced soil flexible abutment composite structures [J]. Rock and Soil Mechanics, 2020, 41(S1): 179-186.
[4] LUO Yi, ZHANG Jia-ming, ZHOU Zhi, CHIKHOTKIN Victor, MI Min, SHEN Jun, . Evolution law of critical moisture content of soil cracking under rainfall-evaporation conditions [J]. Rock and Soil Mechanics, 2020, 41(8): 2592-2600.
[5] XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, HAN Jun-yan, . Study on solid-liquid phase transition characteristics of saturated sand based on large shaking table test on free field [J]. Rock and Soil Mechanics, 2020, 41(7): 2189-2198.
[6] YANG Chang-wei, TONG Xin-hao, WANG Dong, TAN Xin-rong, GUO Xue-yan, CAO Li-cong, . Shaking table test of dynamic response law of subgrade with ballast track under earthquake [J]. Rock and Soil Mechanics, 2020, 41(7): 2215-2223.
[7] QIAO Xiang-jin, LIANG Qing-guo, CAO Xiao-ping, WANG Li-li, . Research on dynamic responses of the portal in bridge-tunnel connected system [J]. Rock and Soil Mechanics, 2020, 41(7): 2342-2348.
[8] HE Jing-bin, FENG Zhong-ju, DONG Yun-xiu, HU Hai-bo, LIU Chuang, GUO Sui-zhu, ZHANG Cong, WU Min, WANG Zhen, . Dynamic response of pile foundation under pile-soil-fault coupling effect in meizoseismal area [J]. Rock and Soil Mechanics, 2020, 41(7): 2389-2400.
[9] BAI Xue-yuan, WANG Xue-bin, SHU Qin, . Continuum-discontinuum simulation of effects of internal friction angle on local fracture of circular cavern surrounding rock under hydrostatic pressure [J]. Rock and Soil Mechanics, 2020, 41(7): 2485-2493.
[10] CHEN Jian-gong, YANG Yang, CHEN Yan-han, CHEN Xiao-bing. Calculation of active earth pressure of cohesive soil behind retaining wall considering soil tensile strength [J]. Rock and Soil Mechanics, 2020, 41(6): 1829-1835.
[11] PAN Rui, CHENG Hua, WANG Lei, WANG Feng-yun, CAI Yi, CAO Guang-yong, ZHANG Peng, ZHANG Hao-jie, . Experimental study on bearing characteristics of bolt-grouting support in shallow fractured surrounding rock of roadway [J]. Rock and Soil Mechanics, 2020, 41(6): 1887-1898.
[12] AI Di-hao, LI Cheng-wu, ZHAO Yue-chao, LI Guang-yao, . Investigation on micro-seismic, electromagnetic radiation and crack propagation characteristics of coal under static loading [J]. Rock and Soil Mechanics, 2020, 41(6): 2043-2051.
[13] ZHAO Jun, GUO Guang-tao, XU Ding-ping, HUANG Xiang, HU Cai, XIA Yue-lin, ZHANG Di. Experimental study of deformation and failure characteristics of deeply-buried hard rock under triaxial and cyclic loading and unloading stress paths [J]. Rock and Soil Mechanics, 2020, 41(5): 1521-1530.
[14] XU Dong-sheng, HUANG Ming, HUANG Fo-guang, CHEN Cheng. Failure behavior of cemented coral sand with different gradations [J]. Rock and Soil Mechanics, 2020, 41(5): 1531-1539.
[15] WANG Hai-jun, YU Shu-yang, TANG Zi-xuan, TANG Lei, REN Ran, XU Jin. Investigation of mode I-II-III fracture of brittle spheres with a 60° internal crack using 3D-ILC [J]. Rock and Soil Mechanics, 2020, 41(5): 1573-1582.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[3] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[4] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[5] LIU Zhen-ping, HE Huai-jian, LI Qiang, ZHU Fa-hua. Study of the technology of 3D modeling and visualization system based on Python[J]. , 2009, 30(10): 3037 -3042 .
[6] YAN Tian-you, LI Tong-chun, ZHAO Lan-hao, JI Wei-wei. Elastoplastic finite element iteration method for stability analysis of three-dimensional slope[J]. , 2009, 30(10): 3102 -3108 .
[7] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[8] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .
[9] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .
[10] CUI Hao-dong, ZHU Yue-ming. Back analysis of seepage field of Ertan high arch dam foundation[J]. , 2009, 30(10): 3194 -3199 .