Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (6): 1829-1835.doi: 10.16285/j.rsm.2019.1078

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Calculation of active earth pressure of cohesive soil behind retaining wall considering soil tensile strength

CHEN Jian-gong1, 2, 3, YANG Yang1, CHEN Yan-han1, CHEN Xiao-bing1   

  1. 1. Department of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Area, Chongqing University, Chongqing 400045, China; 3. Key Laboratory of New Technology for Construction of Cities in Mountain Area of Ministry of Education, Chongqing University, Chongqing 400045, China
  • Received:2019-06-18 Revised:2019-11-26 Online:2020-06-11 Published:2020-07-31
  • Supported by:
    This work was supported by the Key Program of National Natural Science Foundation of China(51638002).

Abstract: When cohesive soil behind a retaining wall is in active earth pressure state, cracks will appear behind the top of the retaining wall, which leads to a wide region of zero pressure, namely cracking depth. The problem of the cracking depth behind a retaining wall has not been solved well. In this study, an example is taken to illustrate that cracks can appear on the surface of filling, because the cracks are not taken into account in the variational method that is used to solve the active soil pressure of cohesive soil behind the retaining wall. The Mohr-Coulomb strength envelope is simplified by a broken line and the calculation formula of the cracking depth of the soil behind the wall is derived by the actual soil tensile strength. According to the stress boundary state and geometric boundary conditions of the upper points on the slip surface, the variational method to calculate the active earth pressure variation has been improved, and the uncertainly model of the active earth pressure is transformed into a deterministic issue. Also, the influence of internal friction angle, cohesion and tensile strength on the crack depth is analyzed. With the increase of internal friction angle and cohesion, the crack depth of soil increases and the soil pressure gradually decreases, and the slip surface shifts towards the wall back. With the increase of the tensile strength of the soil, the cracking depth and the soil pressure both gradually decrease. When the tensile strength is strong enough to resist the tension destruction of the soil, the cracking depth of the soil behind the wall becomes zero, and the soil pressure is no longer affected by the tensile strength.

Key words: retaining wall, active earth pressure, variational method, cracking depth, cohesive soil

CLC Number: 

  • TU432
[1] LI Zhi-hao, XIAO Shi-guo. Calculation method for seismic permanent displacement of cantilever retaining walls considering different movement modes [J]. Rock and Soil Mechanics, 2021, 42(3): 723-734.
[2] SHI Feng, LU Kun-lin, YIN Zhi-kai. Determination of three-dimensional passive slip surface of rigid retaining walls in translational failure mode and calculation of earth pressures [J]. Rock and Soil Mechanics, 2021, 42(3): 735-745.
[3] ZHENG Jun-jie, SHAO An-di, XIE Ming-xing, JING Dan, . Experimental study on retaining wall with EPS cushion under different backfill widths [J]. Rock and Soil Mechanics, 2021, 42(2): 324-332.
[4] LU Liang, HE Lin-yao, WANG Zong-jian, KATSUHIKO ARAI, . Partition calculation theory of horizontal displacement in reinforced earth retaining wall under earthquake [J]. Rock and Soil Mechanics, 2021, 42(2): 401-410.
[5] LI Ji-wei, LIN Fa-li, WEI Chang-fu, WANG Hua-bin, CHEN Pan, ZHU Zan-cheng, LIU Zi-zhen, . Explicit solution of horizontal infiltration equation in unsaturated soils [J]. Rock and Soil Mechanics, 2021, 42(1): 203-210.
[6] NIU Xiao-di, YANG Guang-qing, WANG He, DING Shuo, FENG Fan, . Field tests on structural properties of reinforced retaining walls with different panels [J]. Rock and Soil Mechanics, 2021, 42(1): 245-254.
[7] ZHANG Hui-jie, CAO Wen-gui, LIU Tao. Analysis method of passive earth pressure for retaining wall layered based on principal stress trajectory [J]. Rock and Soil Mechanics, 2020, 41(9): 3022-3030.
[8] CHEN Jian-gong, LI Hui, HE Zi-yong, . Homogeneous soil slope stability analysis based on variational method [J]. Rock and Soil Mechanics, 2019, 40(8): 2931-2937.
[9] ZHAO Xiao-yan, FAN Yu-fei, LIU Liang, JIANG Chu-sheng, . Model test on potential failure surface characteristics of railway stepped reinforced soil retaining wall [J]. Rock and Soil Mechanics, 2019, 40(6): 2108-2118.
[10] CHEN Jian-xu, SONG Wen-wu, . Non-limit active earth pressure for retaining wall under translational motion [J]. Rock and Soil Mechanics, 2019, 40(6): 2284-2292.
[11] RUI Rui, YE Yu-qiu, CHEN Cheng, TU Shu-jie. Nonlinear distribution of active earth pressure on retaining wall considering wall-soil friction [J]. Rock and Soil Mechanics, 2019, 40(5): 1797-1804.
[12] XU Peng, JIANG Guan-lu, LEI Tao, LIU Qi, WANG Zhi-meng, LIU Yong, . Calculation of seismic displacement of reinforced soil retaining walls considering backfill strength [J]. Rock and Soil Mechanics, 2019, 40(5): 1841-1846.
[13] XU Peng , JIANG Guan-lu , WANG Xun, HUANG Hao-wei , HUANG Zhe, WANG Zhi-meng, . Centrifuge model tests on influence of facing on reinforced soil retaining walls [J]. Rock and Soil Mechanics, 2019, 40(4): 1427-1432.
[14] XU Peng, JIANG Guan-lu, QIU Jun-jie, GAO Ze-fei, WANG Zhi-meng, . Shaking table tests on reinforced soil retaining walls with full-height rigid facing [J]. Rock and Soil Mechanics, 2019, 40(3): 998-1004.
[15] WANG Jia-quan, ZHANG Liang-liang, LAI Yi, LU Meng-liang, YE Bin, . Large-scale model tests on static and dynamic mechanical characteristics of reinforced earth retaining wall [J]. Rock and Soil Mechanics, 2019, 40(2): 497-505.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] LIU Zhen-ping, HE Huai-jian, LI Qiang, ZHU Fa-hua. Study of the technology of 3D modeling and visualization system based on Python[J]. , 2009, 30(10): 3037 -3042 .
[3] WANG Wei,WANG Shui-lin,TANG Hua,ZHOU Ping-gen. Application of 3-D GIS to monitoring and forecast system of landslide hazard[J]. , 2009, 30(11): 3379 -3385 .
[4] WANG Li,ZHENG Gang. Research on vertical bearing capacity of partially inclined pile with finite element method[J]. , 2009, 30(11): 3533 -3538 .
[5] FU Hong-yuan, WU Sheng-jun, WANG Gui-yao. Experimental study of influence of compressive stress on water permeability of sands soils[J]. , 2009, 30(12): 3677 -3681 .
[6] MAO Chang-xi, DUAN Xiang-bao, WU Liang-ji. Study of critical gradient of piping for various grain sizes in sandy gravels[J]. , 2009, 30(12): 3705 -3709 .
[7] MIAO Qiang-qiang,ZHANG Lei,CHEN Zheng-han,HUANG Xue-feng. Experimental study of generalized SWCC of unsaturated sand and containing clay[J]. , 2010, 31(1): 102 -106 .
[8] ZHAO Li-zheng,JIANG Hong-tao,TANG Chao-sheng,SHI Bin. Experimental research of soft soil reinforcement using ALOFIX-MC[J]. , 2010, 31(1): 118 -122 .
[9] ZHANG Sha-sha,XIE Yong-li,YANG Xiao-hua,DAI Zhi-ren. Research on microstructure of crude coarse grain saline soil under freezing and thawing cycles[J]. , 2010, 31(1): 123 -127 .
[10] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .