Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (1): 245-254.doi: 10.16285/j.rsm.2020.0578

• Geotechnical Engineering • Previous Articles     Next Articles

Field tests on structural properties of reinforced retaining walls with different panels

NIU Xiao-di1, 2, YANG Guang-qing2, 3, WANG He3, DING Shuo3, FENG Fan3   

  1. 1. School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 2. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 3. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China
  • Received:2020-05-08 Revised:2020-10-09 Online:2021-01-11 Published:2021-01-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51378322, 51709175) and the Natural Science Foundation of Hebei Province (E2019208159).

Abstract: Based on the reinforced retaining wall of Chengdu-Kunming railway, the field tests were carried out. The comparison of the reinforced retaining wall with full-height rigid panels, the reinforced retaining wall with modular panel embedded return package structure and the reinforced retaining wall with modular panel within 9 months after the completion of construction were analyzed to study the structural properties. During the test period, two earthquakes occurred and changes of the deformation of retaining wall and the earth pressure were monitored. The results show that the geogrid strain rate, wall compression and wall horizontal displacement can be well controlled by the reinforced retaining wall with full-height rigid panel, showing the best stability and seismic performance. The earth pressure on the back of the reinforced retaining wall with full-height rigid panel and reinforced retaining wall with modular panel are distributed following with a "M" type along the wall height. The distribution of earth pressure on the back of the reinforced retaining wall with modular panel embedded return package structure is similar to "S" along the wall height. The lateral earth pressure coefficients of the reinforced retaining wall with full-height rigid panel change little along the wall height, which are less than the FHWA calculated values. The lateral earth pressure coefficients of the reinforced retaining wall with modular panel embedded return package structure have an increased trend along the wall height. The values of the middle and lower part of the retaining wall are less than the FHWA calculated values, and the values of the upper part are close to or higher than the static earth pressure coefficients. Most of the lateral earth pressure coefficients of the reinforced retaining wall with modular panel are ranging from the FHWA calculation values to the static earth pressure coefficients. The geogrid strains of three retaining walls change nonlinearly along the wall height. The retaining wall compressions increase gradually with the increased time, especially in the first 50 days. Then the increase rates gradually decrease until the coming of the rainy season, the hydraulic effect promotes the increase rates to increase again. After the earthquakes, the earth pressure on the back decreases, the geogrid strain increases, the wall compressions increase and the wall panels have an obvious trend to move out.

Key words: reinforced retaining wall, different panels, structural property, earthquake

CLC Number: 

  • TU 470
[1] HUANG Rui, TANG Jin-huan, . Pseudo-dynamic analysis of seismic non-limit active earth pressure in RT mode [J]. Rock and Soil Mechanics, 2020, 41(8): 2564-2572.
[2] DU Wen-jie, SHENG Qian, FU Xiao-dong, TANG Hua, CHEN He, DU Yu-xiang, ZHOU Yong-qiang. Dynamic stability analysis and failure mechanism of Yanyang village landslide under earthquake [J]. Rock and Soil Mechanics, 2020, 41(7): 2461-2469.
[3] REN Yang, LI Tian-bin, LAI Lin. Centrifugal shaking table test on dynamic response characteristics of tunnel entrance slope in strong earthquake area [J]. Rock and Soil Mechanics, 2020, 41(5): 1605-1612.
[4] ZHANG Heng-yuan, QIAN De-ling, SHEN Chao, DAI Qi-quan. Experimental investigation on dynamic response of pile group foundation on liquefiable ground subjected to horizontal and vertical earthquake excitations [J]. Rock and Soil Mechanics, 2020, 41(3): 905-914.
[5] WU Xiao-feng, WANG Yu-bing, ZHU Bin, . Centrifuge test of dry sand and saturated sand ground seismic response under earthquake sequence [J]. Rock and Soil Mechanics, 2020, 41(10): 3385-3394.
[6] HE Ying, YU Qin, LIU Zhong-xian, . Simulation of multi-point spatially correlated earthquake ground motions of sedimentary valleys considering scattering effect [J]. Rock and Soil Mechanics, 2019, 40(7): 2739-2747.
[7] XU Peng, JIANG Guan-lu, LEI Tao, LIU Qi, WANG Zhi-meng, LIU Yong, . Calculation of seismic displacement of reinforced soil retaining walls considering backfill strength [J]. Rock and Soil Mechanics, 2019, 40(5): 1841-1846.
[8] XU Peng, JIANG Guan-lu, QIU Jun-jie, GAO Ze-fei, WANG Zhi-meng, . Shaking table tests on reinforced soil retaining walls with full-height rigid facing [J]. Rock and Soil Mechanics, 2019, 40(3): 998-1004.
[9] ZHANG Chun-sheng, LAI Dao-ping, WU Guan-ye, XU Jian-rong, ZHANG Bo-yan, . Failure mode and characteristics study of complex slope blocks under strong earthquake [J]. Rock and Soil Mechanics, 2019, 40(12): 4620-4626.
[10] LIU Yun, LAI Jie, XIN Jian-ping, LI Xiu-di, XING Rong-jun, . Comparison test of dynamic response characteristics of the tunnels through fault [J]. Rock and Soil Mechanics, 2019, 40(12): 4693-4702.
[11] JU Neng-pan, DENG Tian-xin, LI Long-qi, JIANG Jin-yang, ZHANG Chen-yang. Centrifugal shaking table test on toppling deformation mechanism of steep bedding slope under strong earthquake [J]. Rock and Soil Mechanics, 2019, 40(1): 99-108.
[12] YIN Xiao-tao, YAN Fei, QIN Yu-qiao, ZHOU Lei, WANG Dong-ying, . Dynamic stability evaluation on Huaping bedding bank slope of Jinshajiang River Bridge in Huali Expressway under seismic action [J]. , 2018, 39(S1): 387-394.
[13] DUAN Xiao-meng, ZENG Li-feng, . Bearing structure of unsaturated soil and generalized structural properties [J]. , 2018, 39(9): 3103-3112.
[14] BIAN Kang, LIU Jian, HU Xun-jian, LI Peng-cheng, CHEN Ling-zhu, LIU Zhen-ping, . Study on failure mode and dynamic response of rock slope with non-persistent joint under earthquake [J]. , 2018, 39(8): 3029-3037.
[15] ZHANG Ze-lin, WU Shu-ren, WANG Tao, TANG Hui-ming, LIANG Chang-yu, . Influence of seismic wave amplitude on dynamic response of loess-mudstone slope [J]. Rock and Soil Mechanics, 2018, 39(7): 2403-2412.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[3] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[4] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[5] WANG Shu-yun, LU Xiao-bing, ZHAO Jing, WANG Ai-lan. Post-cyclic loading undrained strength degradation characteristics of silty clay[J]. , 2009, 30(10): 2991 -2995 .
[6] LIU Zhen-ping, HE Huai-jian, LI Qiang, ZHU Fa-hua. Study of the technology of 3D modeling and visualization system based on Python[J]. , 2009, 30(10): 3037 -3042 .
[7] ZHAO Cheng-gang,CAI Guo-qing. Principle of generalized effective stress for unsaturated soils[J]. , 2009, 30(11): 3232 -3236 .
[8] ZHOU Huo-yao,SHI Jian-yong. Test research on soil compacting effect of full scale jacked-in pile in saturated soft clay[J]. , 2009, 30(11): 3291 -3296 .
[9] CHENG Tao,YAN Ke-qin,WANG Jing-tao. Study of numerical model for triaxial compression test on clay under different consolidation conditions[J]. , 2009, 30(11): 3352 -3356 .
[10] ZHU Xun-guo,YANG Qing.. Analyzing and studying factors for determining neutral point position of fully grouted rock bolt[J]. , 2009, 30(11): 3386 -3392 .