Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (3): 998-1004.doi: 10.16285/j.rsm.2017.1663

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Shaking table tests on reinforced soil retaining walls with full-height rigid facing

XU Peng1, 2, JIANG Guan-lu1, 2, QIU Jun-jie1, GAO Ze-fei2, WANG Zhi-meng3   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 3. China Railway Eryuan Engineering Group Co., Ltd., Chengdu, Sichuan 610031, China
  • Received:2017-08-11 Online:2019-03-11 Published:2019-04-04
  • Supported by:
    This work was supported by the Project of Science and Technology Research and Development Plan of China Railway Corporation (2014G003-C).

Abstract: Reinforced soil retaining walls showed excellent seismic performance in a large number of earthquakes. In the design of reinforced earth retaining wall under seismic loading, the dynamic load can be regarded as equivalent to the static load according to the quasi-static method. A shaking table test of reinforced soil retaining wall with full-height rigid (FHR) facing was carried out to compare the difference between the response obtained by pseudo-static method and the actual dynamic response. The facing displacement, response acceleration, dynamic earth pressure, and the reinforcement load were measured and analyzed. The following conclusions have been drawn: the distribution of the response acceleration in the reinforced soil retaining wall is non-uniform, and the accelerations in the facing and the reinforced zone are larger than those in the retained zone; the response accelerations measured are larger than those calculated from the current design guidelines; although the location of the dynamic earth pressure at the back of the facing is higher than the design value, the resultant force is only 15%-20% of that calculated by the Mononobe-Okabe method; as a result of the effects of acceleration amplification along the facing and the higher location of the dynamic earth pressure, the predominant deformation mode of the FHR facing is rotation; the distribution of the reinforcement tensile force along the wall facing is nonlinear, and the measured force is larger than that calculated from the code in China.

Key words: reinforced soil retaining wall, earthquake, pseudo-static method, shaking table test, acceleration

CLC Number: 

  • U417.1+15
[1] XU Chao, LUO Min-min, REN Fei-fan, SHEN Pan-pan, YANG Zi-fan. Experimental study on seismic behaviour of reinforced soil flexible abutment composite structures [J]. Rock and Soil Mechanics, 2020, 41(S1): 179-186.
[2] XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, HAN Jun-yan, . Study on solid-liquid phase transition characteristics of saturated sand based on large shaking table test on free field [J]. Rock and Soil Mechanics, 2020, 41(7): 2189-2198.
[3] YANG Chang-wei, TONG Xin-hao, WANG Dong, TAN Xin-rong, GUO Xue-yan, CAO Li-cong, . Shaking table test of dynamic response law of subgrade with ballast track under earthquake [J]. Rock and Soil Mechanics, 2020, 41(7): 2215-2223.
[4] QIAO Xiang-jin, LIANG Qing-guo, CAO Xiao-ping, WANG Li-li, . Research on dynamic responses of the portal in bridge-tunnel connected system [J]. Rock and Soil Mechanics, 2020, 41(7): 2342-2348.
[5] HE Jing-bin, FENG Zhong-ju, DONG Yun-xiu, HU Hai-bo, LIU Chuang, GUO Sui-zhu, ZHANG Cong, WU Min, WANG Zhen, . Dynamic response of pile foundation under pile-soil-fault coupling effect in meizoseismal area [J]. Rock and Soil Mechanics, 2020, 41(7): 2389-2400.
[6] YU Hai-tao, ZHANG Zheng-wei, LI Pan, . Improved equivalent response acceleration method for seismic design of underground structures [J]. Rock and Soil Mechanics, 2020, 41(7): 2401-2410.
[7] DU Wen-jie, SHENG Qian, FU Xiao-dong, TANG Hua, CHEN He, DU Yu-xiang, ZHOU Yong-qiang. Dynamic stability analysis and failure mechanism of Yanyang village landslide under earthquake [J]. Rock and Soil Mechanics, 2020, 41(7): 2461-2469.
[8] REN Yang, LI Tian-bin, LAI Lin. Centrifugal shaking table test on dynamic response characteristics of tunnel entrance slope in strong earthquake area [J]. Rock and Soil Mechanics, 2020, 41(5): 1605-1612.
[9] HAN Jun-yan, LI Man-jun, ZHONG Zi-lan, XU Jing-shu, LI Li-yun, LAN Jing-yan, DU Xiu-li. Seismic response of soil under non-uniform excitation based on shaking table test of buried pipelines [J]. Rock and Soil Mechanics, 2020, 41(5): 1653-1662.
[10] ZHANG Lu-ming, ZHOU Yong, FAN Gang, CAI Hong-yu, DONG Yun. Seismic behavior research and reinforcement effect evaluation of composite retaining structures with nuclear safety level anti-dip layered soft rock slope under strong earthquakes [J]. Rock and Soil Mechanics, 2020, 41(5): 1740-1749.
[11] PAN Dan-guang, CHENG Ye, CHEN Qing-jun. Shaking table test of the effect of underground shopping mall structure on ground motion [J]. Rock and Soil Mechanics, 2020, 41(4): 1134-1145.
[12] LI Ping, ZHANG Yu-dong, BO Tao, GU Jun-ru, ZHU Sheng. Study of ground motion effect of trapezoidal valley site based on centrifuge shaking table test [J]. Rock and Soil Mechanics, 2020, 41(4): 1270-1278.
[13] FENG Li, DING Xuan-ming, WANG Cheng-long, CHEN Zhi-xiong. Shaking table model test on seismic responses of utility tunnel with joint [J]. Rock and Soil Mechanics, 2020, 41(4): 1295-1304.
[14] HUANG Xiao-hu, YI Wu, HUANG Hai-feng, DENG Yong-huang. Study and application of the relationship between preferential flow penetration and slope deformation [J]. Rock and Soil Mechanics, 2020, 41(4): 1396-1403.
[15] ZHANG Heng-yuan, QIAN De-ling, SHEN Chao, DAI Qi-quan. Experimental investigation on dynamic response of pile group foundation on liquefiable ground subjected to horizontal and vertical earthquake excitations [J]. Rock and Soil Mechanics, 2020, 41(3): 905-914.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!