Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (7): 2189-2198.doi: 10.16285/j.rsm.2019.1716

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on solid-liquid phase transition characteristics of saturated sand based on large shaking table test on free field

XU Cheng-shun1, DOU Peng-fei1, DU Xiu-li1, CHEN Su2, HAN Jun-yan1   

  1. 1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education Beijing University of Technology, Beijing 100124, China; 2. Institute of Geophysics, China earthquake Administration, Beijing 100081, China
  • Received:2019-10-06 Revised:2019-12-31 Online:2020-07-10 Published:2020-09-10
  • Supported by:
    This work was supported by the General Program of National Natural Science Foundation of China (51578026), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(51421005) and the National Natural Science Foundation for Outstanding Young Scholars of China (51722801).

Abstract: Based on the large shaking table test of saturated sand on the free field, the dynamic shear stress–strain response of the foundation soil model was obtained by using the linear interpolation method according to the data from accelerometer arrays. At the same time, the concepts of apparent viscosity and zero shear viscosity of non-Newtonian fluid based on the assumption of hydrodynamic theory were introduced to study the characteristics and behaviors of shear thinning after site liquefaction. The characteristics of solid-liquid phase transition of saturated sand under seismic load were studied. Results showed that when the saturated sand was stimulated by a large earthquake, excess pore water pressure accumulated rapidly, and sand liquefaction occurred as the pore water pressure ratio of the upper part of the saturated soil ran up to 1. According to the variation of dynamic shear stress–strain curve, the dynamic shear modulus of saturated sand decreased significantly after liquefaction, indicating that the soil softened gradually. The variation trend of shear stress-shear strain rate of saturated sand derived from the data of dynamic shear stress and dynamic shear strain was similar to the rheological curve of non-Newtonian fluid. The apparent viscosity of the liquefied soil in the upper part of saturated sand layer decreased significantly. After liquefaction, the sand showed the pseudoplastic fluid characteristics of "shear thinning".

Key words: liquefaction, free field, shaking table test, non-Newtonian fluid, shear-thinning

CLC Number: 

  • TU 411.93
[1] LAI Tian-wen, LEI Hao, WU Zhi-xin, WU Hong-gang, . Shaking table test study on basalt fiber reinforced plastics in high slope protection [J]. Rock and Soil Mechanics, 2021, 42(2): 390-400.
[2] XU Chao, LUO Min-min, REN Fei-fan, SHEN Pan-pan, YANG Zi-fan. Experimental study on seismic behaviour of reinforced soil flexible abutment composite structures [J]. Rock and Soil Mechanics, 2020, 41(S1): 179-186.
[3] LI Fu-xiu, WU Zhi-jian, YAN Wu-jian, ZHAO Duo-yin, . Research on dynamic response characteristics of loess tableland slopes based on shaking table test [J]. Rock and Soil Mechanics, 2020, 41(9): 2880-2890.
[4] YANG Chang-wei, TONG Xin-hao, WANG Dong, TAN Xin-rong, GUO Xue-yan, CAO Li-cong, . Shaking table test of dynamic response law of subgrade with ballast track under earthquake [J]. Rock and Soil Mechanics, 2020, 41(7): 2215-2223.
[5] QIAO Xiang-jin, LIANG Qing-guo, CAO Xiao-ping, WANG Li-li, . Research on dynamic responses of the portal in bridge-tunnel connected system [J]. Rock and Soil Mechanics, 2020, 41(7): 2342-2348.
[6] HE Jing-bin, FENG Zhong-ju, DONG Yun-xiu, HU Hai-bo, LIU Chuang, GUO Sui-zhu, ZHANG Cong, WU Min, WANG Zhen, . Dynamic response of pile foundation under pile-soil-fault coupling effect in meizoseismal area [J]. Rock and Soil Mechanics, 2020, 41(7): 2389-2400.
[7] REN Yang, LI Tian-bin, LAI Lin. Centrifugal shaking table test on dynamic response characteristics of tunnel entrance slope in strong earthquake area [J]. Rock and Soil Mechanics, 2020, 41(5): 1605-1612.
[8] HAN Jun-yan, LI Man-jun, ZHONG Zi-lan, XU Jing-shu, LI Li-yun, LAN Jing-yan, DU Xiu-li. Seismic response of soil under non-uniform excitation based on shaking table test of buried pipelines [J]. Rock and Soil Mechanics, 2020, 41(5): 1653-1662.
[9] ZHANG Lu-ming, ZHOU Yong, FAN Gang, CAI Hong-yu, DONG Yun. Seismic behavior research and reinforcement effect evaluation of composite retaining structures with nuclear safety level anti-dip layered soft rock slope under strong earthquakes [J]. Rock and Soil Mechanics, 2020, 41(5): 1740-1749.
[10] PAN Dan-guang, CHENG Ye, CHEN Qing-jun. Shaking table test of the effect of underground shopping mall structure on ground motion [J]. Rock and Soil Mechanics, 2020, 41(4): 1134-1145.
[11] LI Ping, ZHANG Yu-dong, BO Tao, GU Jun-ru, ZHU Sheng. Study of ground motion effect of trapezoidal valley site based on centrifuge shaking table test [J]. Rock and Soil Mechanics, 2020, 41(4): 1270-1278.
[12] FENG Li, DING Xuan-ming, WANG Cheng-long, CHEN Zhi-xiong. Shaking table model test on seismic responses of utility tunnel with joint [J]. Rock and Soil Mechanics, 2020, 41(4): 1295-1304.
[13] ZHANG Heng-yuan, QIAN De-ling, SHEN Chao, DAI Qi-quan. Experimental investigation on dynamic response of pile group foundation on liquefiable ground subjected to horizontal and vertical earthquake excitations [J]. Rock and Soil Mechanics, 2020, 41(3): 905-914.
[14] MA Wei-jia, CHEN Guo-xing, WU Qi, . Experimental study on liquefaction resistance of coral sand under complex loading conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 535-542.
[15] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[3] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[4] MA Kang, XU Jin, WU Sai-gang, ZHANG Ai-hui. Research on surrounding rock stability in local collapse section of highway tunnels[J]. , 2009, 30(10): 2955 -2960 .
[5] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[6] WU Qiong, TANG Hui-ming, WANG Liang-qing, LIN Zhi-hong. Analytic solutions for phreatic line in reservoir slope with inclined impervious bed under rainfall and reservoir water level fluctuation[J]. , 2009, 30(10): 3025 -3031 .
[7] LENG Wu-ming, YANG Qi, LIU Qing-tan, NIE Ru-song. Study of new method for calcutating response of piled bridge abutment in soft ground[J]. , 2009, 30(10): 3079 -3085 .
[8] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[9] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .
[10] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .