Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (4): 1295-1304.doi: 10.16285/j.rsm.2019.0857

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Shaking table model test on seismic responses of utility tunnel with joint

FENG Li1, 2, DING Xuan-ming1, 2, WANG Cheng-long1, 2, CHEN Zhi-xiong1, 2   

  1. 1. College of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Key Laboratory of New Technology for Construction of Cities in Mountain Area of Ministry of Education, Chongqing University, Chongqing 400045, China
  • Received:2019-05-15 Revised:2020-01-05 Online:2020-04-11 Published:2020-07-01
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51622803, 51878103, 51778092) and the Graduate Research and Innovation Foundation of Chongqing, China (CYS18021).

Abstract: Deformation joints are universal in underground utility tunnels that belong to the shallow-buried and slender structure. Under seismic loads, the vibration response of the underground structure with a joint will be affected to a great extent. However, the studies on this problem are limited. In this paper, based on the shaking table model test that considers the influence of joints, the seismic response characteristics of the underground utility tunnel under seismic excitation with different waveforms and different peak accelerations were studied. The acceleration, soil pressure, displacement, strain, and bending moment were measured and analysed. The results indicated that the vibration of the tunnel was mainly affected by the surrounding soil and the sidewall of the joint section separated from soil during earthquake excitation, while the tunnel structure displayed a good integrity. The displacement of the tunnel joint was relatively small under the strong earthquake, which did not result in large-scale deformation failure. The distribution of seismic soil pressure under the strong earthquake was nonlinear. The moment on the joint section was less than that in the middle section in the earthquake, which was beneficial to seismic performance.

Key words: utility tunnel, shaking table test, dynamic response, acceleration

CLC Number: 

  • TU 315
[1] LI Zhi-hao, XIAO Shi-guo. Calculation method for seismic permanent displacement of cantilever retaining walls considering different movement modes [J]. Rock and Soil Mechanics, 2021, 42(3): 723-734.
[2] LAI Tian-wen, LEI Hao, WU Zhi-xin, WU Hong-gang, . Shaking table test study on basalt fiber reinforced plastics in high slope protection [J]. Rock and Soil Mechanics, 2021, 42(2): 390-400.
[3] XU Chao, LUO Min-min, REN Fei-fan, SHEN Pan-pan, YANG Zi-fan. Experimental study on seismic behaviour of reinforced soil flexible abutment composite structures [J]. Rock and Soil Mechanics, 2020, 41(S1): 179-186.
[4] LI Fu-xiu, WU Zhi-jian, YAN Wu-jian, ZHAO Duo-yin, . Research on dynamic response characteristics of loess tableland slopes based on shaking table test [J]. Rock and Soil Mechanics, 2020, 41(9): 2880-2890.
[5] ZHUANG Yan, LI Shao-bang, CUI Xiao-yan, DONG Xiao-qiang, WANG Kang-yu, . Investigation on dynamic response of subgrade and soil arching effect in piled embankment under high-speed railway loading [J]. Rock and Soil Mechanics, 2020, 41(9): 3119-3130.
[6] XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, HAN Jun-yan, . Study on solid-liquid phase transition characteristics of saturated sand based on large shaking table test on free field [J]. Rock and Soil Mechanics, 2020, 41(7): 2189-2198.
[7] YANG Chang-wei, TONG Xin-hao, WANG Dong, TAN Xin-rong, GUO Xue-yan, CAO Li-cong, . Shaking table test of dynamic response law of subgrade with ballast track under earthquake [J]. Rock and Soil Mechanics, 2020, 41(7): 2215-2223.
[8] QIAO Xiang-jin, LIANG Qing-guo, CAO Xiao-ping, WANG Li-li, . Research on dynamic responses of the portal in bridge-tunnel connected system [J]. Rock and Soil Mechanics, 2020, 41(7): 2342-2348.
[9] HE Jing-bin, FENG Zhong-ju, DONG Yun-xiu, HU Hai-bo, LIU Chuang, GUO Sui-zhu, ZHANG Cong, WU Min, WANG Zhen, . Dynamic response of pile foundation under pile-soil-fault coupling effect in meizoseismal area [J]. Rock and Soil Mechanics, 2020, 41(7): 2389-2400.
[10] YU Hai-tao, ZHANG Zheng-wei, LI Pan, . Improved equivalent response acceleration method for seismic design of underground structures [J]. Rock and Soil Mechanics, 2020, 41(7): 2401-2410.
[11] REN Yang, LI Tian-bin, LAI Lin. Centrifugal shaking table test on dynamic response characteristics of tunnel entrance slope in strong earthquake area [J]. Rock and Soil Mechanics, 2020, 41(5): 1605-1612.
[12] HAN Jun-yan, LI Man-jun, ZHONG Zi-lan, XU Jing-shu, LI Li-yun, LAN Jing-yan, DU Xiu-li. Seismic response of soil under non-uniform excitation based on shaking table test of buried pipelines [J]. Rock and Soil Mechanics, 2020, 41(5): 1653-1662.
[13] ZHANG Lu-ming, ZHOU Yong, FAN Gang, CAI Hong-yu, DONG Yun. Seismic behavior research and reinforcement effect evaluation of composite retaining structures with nuclear safety level anti-dip layered soft rock slope under strong earthquakes [J]. Rock and Soil Mechanics, 2020, 41(5): 1740-1749.
[14] WANG Li-an, ZHAO Jian-chang, HOU Xiao-qiang, LIU Sheng-wei, WANG Zuo-wei. Lamb problem for non-homogeneous saturated half-space [J]. Rock and Soil Mechanics, 2020, 41(5): 1790-1798.
[15] PAN Dan-guang, CHENG Ye, CHEN Qing-jun. Shaking table test of the effect of underground shopping mall structure on ground motion [J]. Rock and Soil Mechanics, 2020, 41(4): 1134-1145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[2] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[3] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[4] LIU Zhen-ping, HE Huai-jian, LI Qiang, ZHU Fa-hua. Study of the technology of 3D modeling and visualization system based on Python[J]. , 2009, 30(10): 3037 -3042 .
[5] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[6] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .
[7] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .
[8] CUI Hao-dong, ZHU Yue-ming. Back analysis of seepage field of Ertan high arch dam foundation[J]. , 2009, 30(10): 3194 -3199 .
[9] SUN De-an. Hydro-mechanical behaviours of unsaturated soils and their elastoplastic modelling[J]. , 2009, 30(11): 3217 -3231 .
[10] XU Han,HUANG Bin,RAO Xi-bao,HE Xiao-min,XU Yan-yong. Consolidation and drainage effect of drilling and sand replacement samples in consolidated drained triaxial tests[J]. , 2009, 30(11): 3242 -3248 .