Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (3): 723-734.doi: 10.16285/j.rsm.2020.0929

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Calculation method for seismic permanent displacement of cantilever retaining walls considering different movement modes

LI Zhi-hao1, 3, XIAO Shi-guo2   

  1. 1. Department of Geological Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 3. Southwest Electric Power Design Institute Co., Ltd. of CPECC, Chengdu, Sichuan 610021, China
  • Received:2020-07-02 Revised:2020-12-24 Online:2021-03-11 Published:2021-03-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51578466) and the Research Project of China Railway Eryuan Engineering Group Co. Ltd. (KYY2018100(18-19)).

Abstract: The seismic permanent displacement of cantilever retaining walls are affected by the potential slip failure characteristics of the backfill above the heel plate. In this paper, solutions of the permanent displacement are derived based on the quasi-static approach, upper bound limit analysis and Newmark sliding block model. The proposed method involves three possible wall displacement modes comprising overall rotation with log-spiral curve, horizontal translation along the wall base and rotation around the wall toe. A worked example indicates that the seismic permanent displacement obtained by the first two modes are similar and much higher than the third. Thus, the first two modes are more crucial for engineering project design. Compared with existing empirical formulas, relative error of the proposed method is below 30%. Besides, the proposed result is 7% less than that by Ambraseys-Menu’s method with probability confidence level of 0.7. For the overall rotation mode of the wall-slope system under a specified horizontal seismic action, sensitivity analysis of ten main parameters’ influence on the horizontal yield acceleration is conducted and the order of these sensitivities is recommended.

Key words: cantilever retaining wall, seismic permanent displacement, yield acceleration, movement mode, sensitivity analysis

CLC Number: 

  • TU196+.4
[1] WANG Chong-yu, LIU Xiao-ping, ZHANG Jia-qiang, CAO Zhou-hong, . Experimental study on passive slip surface of limited width soil behind a rigid wall [J]. Rock and Soil Mechanics, 2021, 42(7): 1839-1849.
[2] HE Jiang, XIAO Shi-guo, . Calculation method for seismic permanent displacement of assembled multi-step cantilever retaining walls [J]. Rock and Soil Mechanics, 2021, 42(7): 1971-1982.
[3] WU Shun-chuan, SUN Wei, LIU Yang, CHENG Zi-qiao, XU Xue-liang, . Study on simulation method of mode I fracture toughness and its meso-influencing factors [J]. Rock and Soil Mechanics, 2020, 41(8): 2536-2546.
[4] LI Jian-fei, SU Yang, SUN Zhi-bin, ZHAO Chen, . 3D seismic displacement analysis method of stepped slopes reinforced with piles based on Newmark principle [J]. Rock and Soil Mechanics, 2020, 41(8): 2785-2795.
[5] ZHANG Xiao-xi, HE Si-ming, FAN Xiao-yi, . Seismic stability of L-shape retaining walls and determination method of sliding surface [J]. Rock and Soil Mechanics, 2019, 40(10): 4011-4020.
[6] WANG Zhi-rong, HE Ping, GUO Zhi-wei, WANG Yong-chun. Calculation of initiation pressure of vertical well for coalbed methane considering crack characteristic index [J]. , 2018, 39(S1): 369-377.
[7] XU Peng, JIANG Guan-lu, QIU Jun-jie, LIN Zhan-zhan, WANG Zhi-meng,. Limit analysis on yield acceleration and failure model of reinforced soil retaining walls using two-wedge method [J]. , 2018, 39(8): 2765-2770.
[8] GUO Chong-yang, LI Dian-qing, CAO Zi-jun, GAO Guo-hui, TANG Xiao-song. Efficient reliability sensitivity analysis for slope stability in spatially variable soils [J]. , 2018, 39(6): 2203-2210.
[9] CHEN Wei-zhong, MA Yong-shang, YU Hong-dan, GONG Zhe, LI Xiang-ling,. Parameter sensitivity analysis for thermo-hydro-mechanical coupling model of clay tunnel for radioactive waste disposal [J]. , 2018, 39(2): 407-416.
[10] ZHANG Yong-jie, XIA Yi-qi, FENG Xia-ting, WANG Gui-yao,. A simplified method and affecting factors for double pile-column foundation in abrupt slope [J]. , 2017, 38(6): 1705-1715.
[11] ZOU Fei,LONG Wan-xue,LI Liang,. Theoretical analysis and numerical simulation of rock damage and failure under wedge cutting [J]. , 2016, 37(7): 2101-2108.
[12] CHEN Wen-wu, BI Jun, MA Ya-wei, LIU Wei, JIANG Yao, . Fitted and predicted equations of MK model for soil-water characteristic curve and their parametric analysis [J]. , 2016, 37(11): 3208-3214.
[13] LEI Yong, LIU Ze. A calculation method for Rock-socketed depth of highway bridge pile based on Hoek-Brown strength criterion [J]. , 2015, 36(2): 457-462.
[14] ZHANG Rong-ze , QIAN Jian-gu , . Model tests on excavation-induced ground settlement due to movement of retaining wall [J]. , 2015, 36(10): 2921-2926.
[15] SONG Wei-dong ,CAO Shuai ,FU Jian-xin ,JIANG Guo-jian ,WU Feng,. Sensitivity analysis of impact factors of pillar stability and its application [J]. , 2014, 35(S1): 271-277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[3] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[4] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[5] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[6] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[7] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[8] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .
[9] LI Min,CHAI Shou-xi,WANG Xiao-yan,WEI Li. Examination of reinforcement effect on basis of strength increment of reinforced saline soil with wheat straw and lime[J]. , 2011, 32(4): 1051 -1056 .
[10] XU Chong, LIU Bao-guo, LIU Kai-yun, GUO Jia-qi. Intelligent analysis model of landslide displacement time series based on coupling PSO-GPR[J]. , 2011, 32(6): 1669 -1675 .