›› 2011, Vol. 32 ›› Issue (10): 3163-3170.

• Numerical Analysis • Previous Articles     Next Articles

Study of the hydro-mechanical-damage coupled creep constitutive model of mudstone, Part Ⅱ: Numerical algorithm and parameter inversion

JIA Shan-po1, 2, 3, CHEN Wei-zhong2, 3, YU Hong-dan3, LI Xiang-ling4   

  1. 1. School of Urban Construction, Yangtze University, Jingzhou, Hubei 434023, China; 2. Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan 250061, China; 3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 4. Euridice, SCK•CEN, Belgian Nuclear Research Centre, Mol 2400, Belgium
  • Received:2010-01-28 Online:2011-10-10 Published:2011-10-13

Abstract: Further analysis is performed on hydro-mechanical-damage coupled creep constitutive model of mudstone proposed by authors in part one. Based on the continuum damage mechanics and Biot theory, the finite element equations of creep damage model are derived by considering the hydro-mechanical-damage coupling. The four-step numerical framework, i.e., elastic predictor-plastic corrector-damage corrector-permeability corrector, is provided. A nonlinear finite element analysis program is developed by the above algorithm. Based on the in-situ monitoring results of lining deformation for about 20 years, the unknown parameters of mudstone are acquired by the method of displacement back analysis. Considering the actual case of the construction of the Test Drift of radioactive waste disposal in the deep Boom mudstone formation in Belgium, the hydro-mechanical coupling process, the evolution of damage and the long term stability of the surrounding rock are studied by the proposed models. The results show that the permeability of excavation damaged zone is 120 times than that of the original mudstone after excavation. Because of the self-healing of fractures, the permeability of excavation damaged zone changes obviously and tends to self-heal with time because of the stress-water action. About 3.5 years later, the permeability of the surrounding rock is near original mudstone. The creep damage increases rapidly in the early stage and tends to stabilize gradually with time. Damage of middle part is larger than that of bottom and top part of the surrounding rock. The study can be used for predicting the long-term stability of tunnel engineering.

Key words: mudstone, constitutive model, damage mechanics, hydro-mechanical coupling, finite elements, inversion

CLC Number: 

  • TU 452
[1] JIN Qing, WANG Yi-lin, CUI Xin-zhuang, WANG Cheng-jun, ZHANG Ke, LIU Zheng-yin, . Deformation behaviour of geobelt in weathered rock material-tire shred lightweight soil under pullout condition [J]. Rock and Soil Mechanics, 2020, 41(2): 408-418.
[2] DENG Zi-qian, CHEN Jia-shuai, WANG Jian-wei, LIU Xiao-wen, . Constitutive model and experimental study of uniform yield surface based on SFG model [J]. Rock and Soil Mechanics, 2020, 41(2): 527-534.
[3] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[4] HE Peng-fei, MA Wei, MU Yan-hu, HUANG Yong-ting, DONG Jian-hua, . Experimental analysis of interfacial shear behavior of loess-mortar block and construction of constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 82-90.
[5] RUAN Yong-fen, GAO Chun-qin, LIU Ke-wen, JIA Rong-gu, DING Hai-tao, . Inversion of rock and soil mechanics parameters based on particle swarm optimization wavelet support vector machine [J]. Rock and Soil Mechanics, 2019, 40(9): 3662-3669.
[6] ZHANG Chao, YANG Qi-jun, CAO Wen-gui, . Study of damage constitutive model of brittle rock considering post-peak stress dropping rate [J]. Rock and Soil Mechanics, 2019, 40(8): 3099-3106.
[7] LIU Si-hong, SHEN Chao-min, MAO Hang-yu, SUN Yi. State-dependent elastoplastic constitutive model for rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2891-2898.
[8] ZHANG Ling-kai, WANG Rui, ZHANG Jian-min, TANG Xin-jun, . A static and dynamic constitutive model of rockfill material considering particle breakage [J]. Rock and Soil Mechanics, 2019, 40(7): 2547-2554.
[9] WANG Zhen, ZHU Zhen-de, CHEN Hui-guan, ZHU Shu, . A thermo-hydro-mechanical coupled constitutive model for rocks under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(7): 2608-2616.
[10] WANG Jun-min, XIONG Yong-lin, YANG Qi-lai, SANG Qin-yang, HUANG Qiang. Study of the dynamic elastoplastic constitutive model for unsaturated soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2323-2331.
[11] MA Chun-hui, YANG Jie, CHENG Lin, LI Ting, LI Ya-qi, . Adaptive inversion analysis of material parameters of rock-fill dam based on QGA-MMRVM [J]. Rock and Soil Mechanics, 2019, 40(6): 2397-2406.
[12] WANG Jie, SONG Wei-dong, TAN Yu-ye, FU Jian-xin, CAO Shuai, . Damage constitutive model and strength criterion of horizontal stratified cemented backfill [J]. Rock and Soil Mechanics, 2019, 40(5): 1731-1739.
[13] SUN Yi-fei, CHEN Cheng, . A state-dependent stress-dilatancy equation without state index and its associated constitutive model [J]. Rock and Soil Mechanics, 2019, 40(5): 1813-1822.
[14] YANG Zong-ji, CAI Huan, LEI Xiao-qin, WANG Li-yong, DING Peng-peng, QIAO Jian-ping, . Experiment on hydro-mechanical behavior of unsaturated gravelly soil slope [J]. Rock and Soil Mechanics, 2019, 40(5): 1869-1880.
[15] YANG Qi-lai, XIONG Yong-lin, ZHANG Sheng, LIU Gan-bin, ZHENG Rong-yue, ZHANG Feng, . Elastoplastic constitutive model for soft rock considering temperature effect [J]. Rock and Soil Mechanics, 2019, 40(5): 1898-1906.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Chuan-ying, HU Pei-liang, SUN Wei-chun. Method for evaluating rock mass integrity based on borehole camera technology[J]. , 2010, 31(4): 1326 -1330 .
[2] LI Hua-ming, JIANG Guan-lu, LIU Xian-feng. Study of dynamic characteristics of saturated silty soil ground treated by CFG columns[J]. , 2010, 31(5): 1550 -1554 .
[3] TAN Yun-zhi, KONG Ling-wei, GUO Ai-guo, WAN Zhi. Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J]. , 2010, 31(7): 2289 -2294 .
[4] WANG Yun-gang, XIONG Kai, LING Dao-sheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. , 2010, 31(8): 2619 -2624 .
[5] LONG Zhao,ZHAO Ming-hua,ZHANG En-xiang,LIU Jun-long. A simplified method for calculating critical anchorage length of bolt[J]. , 2010, 31(9): 2991 -2994 .
[6] SHI Dan-da, ZHOU Jian, JIA Min-cai, YANG Yong-xiang. Back analysis of parameters and long-term settlement prediction of harbor soft ground considering its creep behavior[J]. , 2009, 30(3): 746 -750 .
[7] DENG Zong-wei, LENG Wu-ming, LI Zhi-yong, YUE Zhi-ping. Finite element analysis of time effect for coupled problem of temperature and stress fields in slope supported by shotcrete[J]. , 2009, 30(4): 1153 -1158 .
[8] LI Jian ,TAN Zhong-sheng ,YU Yu ,NI Lu-su. Research on construction procedure for shallow large-span tunnel undercrossing highway[J]. , 2011, 32(9): 2803 -2809 .
[9] LIU Zhen-ping,HE Huai-jian,BAI Shi-wei,ZHANG Hua,ZOU Dan,LI Huo-bing. Field test and numerical simulation of pile-slab foundation of 500 kV transmission line tower in silt[J]. , 2012, 33(4): 1031 -1039 .
[10] TIAN Kan-liang , ZHANG Hui-li , MA Jun . Test study of loess structure based on static strength conditions[J]. , 2012, 33(7): 1993 -1999 .