›› 2011, Vol. 32 ›› Issue (12): 3566-3570.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Preliminary study of equivalent damage rheological model for jointed rock

HUANG Yao-ying1, 2, ZHENG Hong1   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China
  • Received:2010-06-13 Online:2011-12-10 Published:2011-12-13

Abstract: Equivalent damage rheological model for jointed rock is preliminarily studied. Rock and jointed plane’s damage rheological functions are developed separately on the basis of supposing that the rock is isotropic body and isotropic damage and the jointed plane’s normal and tangential damage is different. Finite element method calculation function of equivalent damage rheological model for jointed rock is deduced; and its finite element method program is developed by assuming that the material is not damage and calculating stress adopting effective stress. Through case study, it is shown that the equivalent damage rheological model for jointed rock is feasible; it can reflect the damage process well.

Key words: jointed rock, damage, rheological

CLC Number: 

  • O 346.5
[1] CHEN Wei-zhong, LI Fan-fan, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study on creep characteristics of claystone under thermo-hydro-mechanical coupling [J]. Rock and Soil Mechanics, 2020, 41(2): 379-388.
[2] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong, SHEN Fa-yi. Experimental and model research on shear creep of granite under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.
[3] LIANG Ke, CHEN Guo-xing, LIU Kang, WANG Yan-zhen, . Degradation properties and prediction model of maximum shear modulus of saturated coral sand under cyclic triaxial loading [J]. Rock and Soil Mechanics, 2020, 41(2): 601-611.
[4] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[5] WANG Pei-tao, HUANG Zheng-jun, REN Fen-hua, ZHANG Liang, CAI Mei-feng, . Research on direct shear behaviour and fracture patterns of 3D-printed complex jointed rock models [J]. Rock and Soil Mechanics, 2020, 41(1): 46-56.
[6] LI Fan-fan, CHEN Wei-zhong, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study of mechanical properties of claystone based on plastic damage [J]. Rock and Soil Mechanics, 2020, 41(1): 132-140.
[7] LIU Quan-sheng, LUO Ci-you, ZHU Yuan-guang, JIANG Jing-dong, LIU He, PENG Xing-xin, PAN Yu-cong, . Research on orientation layout of pressure sensing units by rheological stress recovery method [J]. Rock and Soil Mechanics, 2020, 41(1): 336-341.
[8] SONG Yong-jun, YANG Hui-min, ZHANG Lei-tao, REN Jian-xi. CT real-time monitoring on uniaxial damage of frozen red sandstone [J]. Rock and Soil Mechanics, 2019, 40(S1): 152-160.
[9] FAN Yun-hui, ZHU Qi-zhi, NI Tao, ZHANG Kun, ZHANG Zhen-nan, . A brittle-ductile transition constitutive model based on discrete elastic tensors [J]. Rock and Soil Mechanics, 2019, 40(S1): 181-188.
[10] LI Jie-lin, ZHU Long-yin, ZHOU Ke-ping, LIU Han-wen, CAO Shan-peng, . Damage characteristics of sandstone pore structure under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(9): 3524-3532.
[11] ZHANG Chao, YANG Qi-jun, CAO Wen-gui, . Study of damage constitutive model of brittle rock considering post-peak stress dropping rate [J]. Rock and Soil Mechanics, 2019, 40(8): 3099-3106.
[12] WANG Rui, YAN Shuai, BAI Jian-biao, CHANG Zhi-guo, SONG Yuan-ba, . Theoretical analysis of the destabilization mechanism and the damaged width of rib pillar in open-pit highwall mining [J]. Rock and Soil Mechanics, 2019, 40(8): 3167-3180.
[13] SUN Feng, XUE Shi-feng, PANG Ming-yu, TANG Mei-rong, ZHANG Xiang, LI Chuan, . 3D simulation of fracture growth from perforation to near-wellbore in horizontal wells based on continuum damage model [J]. Rock and Soil Mechanics, 2019, 40(8): 3255-3261.
[14] LIU Xin-rong, DENG Zhi-yun, LIU Yong-quan, LIU SHU-lin, LU Yu-ming, . Study of cumulative damage and failure mode of horizontal layered rock slope subjected to seismic loads [J]. Rock and Soil Mechanics, 2019, 40(7): 2507-2516.
[15] MA De-peng, ZHOU Yan, LIU Chuan-xiao, SHANG Yan-dong, . Energy evolution characteristics of coal failure in triaxial tests under different unloading confining pressure rates [J]. Rock and Soil Mechanics, 2019, 40(7): 2645-2652.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[3] LI Rong-tao. A coupled chemoplastic-damage constitutive model for plain concrete subjected to high temperature[J]. , 2010, 31(5): 1585 -1591 .
[4] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[5] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[6] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[7] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[8] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[9] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .
[10] LIU Nian-ping , WANG Hong-tu , YUAN Zhi-gang , LIU Jing-cheng. Fisher discriminant analysis model of sand liquefaction and its application[J]. , 2012, 33(2): 554 -557 .