›› 2011, Vol. 32 ›› Issue (12): 3685-3692.

• Geotechnical Engineering • Previous Articles     Next Articles

Dynamic responses of raft-superstructure on saturated soil under moving load

XU Bin1, 2, LEI Xiao-yan2, XU Man-qing1, LIU Lin-ya2   

  1. 1. Department of Civil Engineering, Nanchang Institute of Technology, Nanchang 330029, China 2. Engineering Research Center of Railway Environmental Vibration and Noise, Ministry of Education, East China Jiaotong University, Nanchang 330013, China
  • Received:2010-06-01 Online:2011-12-10 Published:2011-12-13

Abstract: Based on Biot’s theory and the minimum potential energy principle as well as the thin plate theory, the superstructure, raft and soil are assumed to be whole system according to the substructure method. The system must satisfy the continuity conditions at the interface between the superstructure, raft and soil surface. Considering the compatibility condition that the vertical displacement of the interface between the raft and the saturated soil should be equal, the integral equation accounting for the vertical coupling of the superstructure-raft system with the saturated soil subjected to a moving load is constructed. Using the numerical inverse transform technique, the forces and displacements of the superstructure, plate and saturated soil at any time are obtained. Some numerical results are presented to demonstrate the capacity of the proposed model. Numerical results show that the horizontal displacements and vertical displacements of each floor of the superstructure increase with increasing velocities of moving load. The vertical displacements in each floor have small change. Also, for a lower moving velocity, the curve of the horizontal displacements changes smoothly with the superstructure height increasing. When higher moving velocity, the curve of the horizontal displacements changes obviously with superstructure height increasing.

Key words: moving loads, saturated soil, superstructure, thin plate theory, substructure method, integral equation

CLC Number: 

  • TU 471
[1] CHENG Tao, YAN Ke-qin, HU Ren-jie, ZHENG Jun-jie, ZHANG Huan, CHEN He-long, JIANG Zhi-jie, LIU Qiang, . Analytical method for quasi-two-dimensional plane strain consolidation problem of unsaturated soil [J]. Rock and Soil Mechanics, 2020, 41(2): 453-460.
[2] DENG Zi-qian, CHEN Jia-shuai, WANG Jian-wei, LIU Xiao-wen, . Constitutive model and experimental study of uniform yield surface based on SFG model [J]. Rock and Soil Mechanics, 2020, 41(2): 527-534.
[3] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[4] CHENG Hao, TANG Hui-ming, WU Qiong, LEI Guo-ping, . An elasto-plasticity extended Cam-clay model for unsaturated soils using explicit integration algorithm in FEM with hydraulic hysteresis [J]. Rock and Soil Mechanics, 2020, 41(2): 676-686.
[5] ZHOU Feng-xi, LIU Hong-bo, . Propagation characteristics of Rayleigh waves in unsaturated soils [J]. Rock and Soil Mechanics, 2019, 40(8): 3218-3226.
[6] ZHAN Liang-tong, HU Ying-tao, LIU Xiao-chuan, CHEN Jie, WANG Han-lin, ZHU Bin, CHEN Yun-min. Centrifuge modelling of rainfall infiltration in an unsaturated loess and joint monitoring of multi-physical parameters [J]. Rock and Soil Mechanics, 2019, 40(7): 2478-2486.
[7] ZHOU Feng-xi, GAO Guo-yao, . Steady-state analysis of the heat-moisture-salt coupling for unsaturated soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2050-2058.
[8] WANG Jun-min, XIONG Yong-lin, YANG Qi-lai, SANG Qin-yang, HUANG Qiang. Study of the dynamic elastoplastic constitutive model for unsaturated soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2323-2331.
[9] TAO Gao-liang, WU Xiao-kang, GAN Shi-chao, XIAO Heng-lin, MA Qiang, LUO Chen-chen, . Experimental study and model prediction of permeability coefficient of unsaturated clay with different initial void ratios [J]. Rock and Soil Mechanics, 2019, 40(5): 1761-1770.
[10] ZHENG Guo-feng, GUO Xiao-xia, SHAO Long-tan, . Experimental verification of an unsaturated shear strength criterion based on the state surface expression [J]. Rock and Soil Mechanics, 2019, 40(4): 1441-1448.
[11] DING Bo-yang, SONG You-zheng. Dynamic response calculation for u-P solution in saturated soil subjected to an underground point source [J]. Rock and Soil Mechanics, 2019, 40(2): 474-480.
[12] FANG Jin-jin, FENG Yi-xin, ZHAO Wei-long, WANG Li-ping, YU Yong-qiong, . Nonlinear constitutive model for intact loess in true tri-axial tests [J]. Rock and Soil Mechanics, 2019, 40(2): 517-528.
[13] YANG Ming-hui, CHEN He, CHEN Ke. Study of the hysteresis effect model of SWCC boundary curves based on fractal theory [J]. Rock and Soil Mechanics, 2019, 40(10): 3805-3812.
[14] CHEN Zheng-han, GUO Nan, . New developments of mechanics and application for unsaturated soils and special soils [J]. Rock and Soil Mechanics, 2019, 40(1): 1-54.
[15] DUAN Xiao-meng, ZENG Li-feng, . Bearing structure of unsaturated soil and generalized structural properties [J]. , 2018, 39(9): 3103-3112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] SUN De-an,CHEN Bo. Mechanical behavior of remolded overconsolidated Shanghai soft clay and its elastoplastic simulation[J]. , 2010, 31(6): 1739 -1743 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[6] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[7] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[8] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[9] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[10] TANG Shi-bin, TANG Chun-an, LI Lian-chong, ZHANG Yong-bin. Investigation on time-dependent deformation of tunnel induced by humidity diffusion[J]. , 2011, 32(S1): 697 -0703 .