Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (7): 2478-2486.doi: 10.16285/j.rsm.2018.0312

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Centrifuge modelling of rainfall infiltration in an unsaturated loess and joint monitoring of multi-physical parameters

ZHAN Liang-tong, HU Ying-tao, LIU Xiao-chuan, CHEN Jie, WANG Han-lin, ZHU Bin, CHEN Yun-min   

  1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
  • Received:2018-03-06 Online:2019-07-11 Published:2019-07-06
  • Supported by:
    This work was supported by the National Science Fund for Distinguished Young Scholars (51625805) and the General Program of National Natural Science Foundation of China (51378466).

Abstract: Understanding rainfall infiltration process and rain-induced failure mechanism in unsaturated soils depends on experimental study with joint monitoring of multi-physical parameters. Based on the monitoring technology of soil response under a high-gravity environment, centrifuge modelling of rainfall infiltration in a unsaturated loess is carried out. Effects of high-gravity on micro-probe of time domain reflectometers (TDR) and tensiometer were evaluated. TDR probes, tensiometers, bender elements were jointly used to monitor the multi-physical response in the soil model. The experimental results showed that consistent waveforms were measured by the TDR probes for a given soil subjected to at different g levels. It indicated that the measurement by TDR was not influence by the high gravity, and the measurement error of gravimetric moisture content was within 2%. The value of matric suction measured by the tensiometer appeared to decline during centrifugal acceleration process. After the acceleration reached the stable value of 40g, the recorded suction was recovered to the initial suction measured under normal gravity within 10 minutes. During the process of rainfall infiltration, the TDR, tensiometer and bender element, which were buried at same depth, showed a concurrent response to the arrival of wetting front. Rainfall infiltration resulted in an increase in moisture content, a decline in matric suction, and a decrease in shear-wave velocity. The joint monitoring of muti-physical parameters will provide useful data for establishing the relationships among moisture content, matric suction and shear modulus.

Key words: unsaturated soil, rainfall infiltration, centrifuge modelling, TDR probe, tensiometer, bender element

CLC Number: 

  • TU 444
[1] YANG Zhi-hao, YUE Zu-run, FENG Huai-ping, . Experimental study on moisture migration properties in unsaturated silty subgrade [J]. Rock and Soil Mechanics, 2020, 41(7): 2241-2251.
[2] CHEN Hao, HU Xiao-rong. Triple-shear failure criteria and experimental verification for unsaturated soils [J]. Rock and Soil Mechanics, 2020, 41(7): 2380-2388.
[3] WEN Wei, LAI Yuan-ming, YOU Zhe-min, LI Ji-feng, . Analysis of pore relative humidity of salinized unsaturated soil based on Pitzer model [J]. Rock and Soil Mechanics, 2020, 41(6): 1944-1952.
[4] TAO Shuai, DONG Yi, WEI Chang-fu, . Small-strain stiffness test system of soil under controllable environmental humidity [J]. Rock and Soil Mechanics, 2020, 41(6): 2132-2142.
[5] LIU Hong-bo, ZHOU Feng-xi, YUE Guo-dong, HAO Lei-chao. Propagation characteristics of thermoelastic wave in unsaturated soil [J]. Rock and Soil Mechanics, 2020, 41(5): 1613-1624.
[6] SUN Yin-lei, TANG Lian-sheng, LIU Jie, . Advances in research on microstructure and intergranular suction of unsaturated soils [J]. Rock and Soil Mechanics, 2020, 41(4): 1095-1122.
[7] LI Xiao-xuan, LI Tao, LI Jian, ZHANG Tao. An elastoplastic two-surface model for unsaturated structural clays under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(4): 1153-1160.
[8] LI Hua, LI Tong-lu, JIANG Rui-jun, FAN Jiang-wen. Measurement of unsaturated permeability curve using filter paper method [J]. Rock and Soil Mechanics, 2020, 41(3): 895-904.
[9] SHI Zhen-ning, QI Shuang-xing, FU Hong-yuan, ZENG Ling, HE Zhong-ming, FANG Rui-min, . A study of water content distribution and shallow stability of earth slopes subject to rainfall infiltration [J]. Rock and Soil Mechanics, 2020, 41(3): 980-988.
[10] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[11] CHENG Tao, YAN Ke-qin, HU Ren-jie, ZHENG Jun-jie, ZHANG Huan, CHEN He-long, JIANG Zhi-jie, LIU Qiang, . Analytical method for quasi-two-dimensional plane strain consolidation problem of unsaturated soil [J]. Rock and Soil Mechanics, 2020, 41(2): 453-460.
[12] DENG Zi-qian, CHEN Jia-shuai, WANG Jian-wei, LIU Xiao-wen, . Constitutive model and experimental study of uniform yield surface based on SFG model [J]. Rock and Soil Mechanics, 2020, 41(2): 527-534.
[13] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[14] CHENG Hao, TANG Hui-ming, WU Qiong, LEI Guo-ping, . An elasto-plasticity extended Cam-clay model for unsaturated soils using explicit integration algorithm in FEM with hydraulic hysteresis [J]. Rock and Soil Mechanics, 2020, 41(2): 676-686.
[15] LIU Li, WU Yang, CHEN Li-hong, LIU Jian-kun, . Accuracy analysis of wetting front advancing method based on numerical simulation [J]. Rock and Soil Mechanics, 2019, 40(S1): 341-349.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!