›› 2011, Vol. 32 ›› Issue (12): 3821-3826.

• Numerical Analysis • Previous Articles     Next Articles

Research on mesomechanical parameters of rock and soil mass based on BP neural network

ZHOU Yu1, WU Shun-chuan1, 2, JIAO Jian-jin1, ZHANG Xiao-ping3   

  1. 1. School of Civil and Environment Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China; 3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • Received:2010-08-19 Online:2011-12-10 Published:2011-12-13

Abstract: At present, in particle flow theory, mesomechanical parameters can only be obtained by varying them until the macro mechanical parameters of the numerical sample match that of the laboratory rock-soil mass sample. The adjustment process is inefficient with some blindness; so a new method should be introduced to establish the relationship between macro mechanical parameters and mesomechanical parameters. Based on PFC3D program, a nonlinear network model linked macro mechanical parameters and mesomechanical parameters is founded by adopting back propagation (BP) neural network; so mesomechanical parameters can be inversed rapidly and accurately by inputting macro mechanical parameters. Some study results are gained as follows: (1) Precision of macro mechanical parameters calculated by inversed results are generally over 90%. (2) Inversion performance of BP neural network model is best when RES, which means the number of particles across the minimum scale of the model, is equals to 10 and the hidden layer has six neurons. Application results show that BP neural network model exhibits an excellent inversion ability of mesomechanical parameters of rock-soil mass and provides a new technical approach for application of particle flow theory.

Key words: BP neural network, particle flow theory, macro mechanical parameters, mesomechanical parameters, inversion

CLC Number: 

  • TU 441
[1] RUAN Yong-fen, GAO Chun-qin, LIU Ke-wen, JIA Rong-gu, DING Hai-tao, . Inversion of rock and soil mechanics parameters based on particle swarm optimization wavelet support vector machine [J]. Rock and Soil Mechanics, 2019, 40(9): 3662-3669.
[2] ZHAO Jiu-bin, LIU Yuan-xue, LIU Na, HU Ming, . Spatial prediction method of regional landslide based on distributed bp neural network algorithm under massive monitoring data [J]. Rock and Soil Mechanics, 2019, 40(7): 2866-2872.
[3] MA Chun-hui, YANG Jie, CHENG Lin, LI Ting, LI Ya-qi, . Adaptive inversion analysis of material parameters of rock-fill dam based on QGA-MMRVM [J]. Rock and Soil Mechanics, 2019, 40(6): 2397-2406.
[4] XU Nian-chun, WU Tong-qing, PI Hai-yang, YOU Lei, WU Yue,. Inversion of shear strength of soil based on flexible bearing plate loading test [J]. , 2018, 39(S1): 227-234.
[5] YAN Tian-you, CUI Zhen, ZHANG Yong-hui, ZHANG Chuan-jian, SHENG Qian, LI Jian-he,. Study of distribution characteristics of in-situ stress field in occurrence area of crossing active fault tunnel engineering [J]. , 2018, 39(S1): 378-386.
[6] WANG Qing-wu, JU Neng-pan, DU Ling-li, HUANG Jian, HU Yong,. Three dimensional inverse analysis of geostress field in the Sangri–Jiacha section of Lasa–Linzhi railway [J]. , 2018, 39(4): 1450-1462.
[7] LIU Fei-yue, YANG Tian-hong, ZHANG Peng-hai1, ZHOU Jing-ren, DENG Wen-xue, HOU Xian-gang, ZHAO Yong-chuan, . Dynamic inversion of rock fracturing stress field based on acoustic emission [J]. , 2018, 39(4): 1517-1524.
[8] YIN Shuai, DING Wen-long, SHAN Yu-ming, ZHOU Wen, XIE Run-cheng,. A new method for quantitative evaluation of microcrack stress sensitivity of tight sandstone reservoir based on inversion of acoustic data [J]. , 2017, 38(2): 409-418.
[9] CAO Yuan, NIU Guan-yi, WANG Tie-liang, WANG Ying-jie,. A new method for rock porosity inversion based on in-situ permeability test [J]. , 2017, 38(1): 272-276.
[10] FENG Fan, QIU Xin-jiao, ZHANG Guo-xin, GUAN Jun-feng, WANG Dan,. Inversion of mechanical parameters of super-high arch dam based on deformation monitoring during construction period [J]. , 2017, 38(1): 237-246.
[11] WU Shun-chuan, HUANG Xiao-qing, CHEN Fan, CHAI Jin-fei, WU Hao-yan, . Moment tensor inversion of rock failure and its application [J]. , 2016, 37(S1): 1-18.
[12] HU Jun , DONG Jian-hua , WANG Kai-kai , HUANG Gui-chen,. Research on CPSO-BP model of slope stability [J]. , 2016, 37(S1): 577-582.
[13] WANG Kai-he, LUO Xian-qi, SHEN Hui, ZHANG Hai-tao. GSA-BP neural network model for back analysis of surrounding rock mechanical parameters and its application [J]. , 2016, 37(S1): 631-638.
[14] LI Pei-chao, XU Zhen-hua. An analytical solution of finite two-dimensional Biot’s consolidation due to surface loading within a fluid-saturated porous medium [J]. , 2016, 37(9): 2599-2602.
[15] ZHANG Xue-peng, JIANG Yu-jing, WANG Gang, WANG Jian-chang,. Numerical experiments on rate-dependent behaviors of granite based on particle discrete element model [J]. , 2016, 37(9): 2679-2686.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Qing-bing,XIANG Wei,ZHANG Wei-feng,CUI De-shan. Experimental study of ionic soil stabilizer-improves expansive soil[J]. , 2009, 30(8): 2286 -2290 .
[2] KUANG Yu-chun, WU Kai-song, YANG Ying-xin, MA De-kun. Simulation model of drilling process of three-cone bit[J]. , 2009, 30(S1): 235 -238 .
[3] DU Wen-qi, WANG Gang. Statistical analysis of earthquake-induced sliding displacements of earth structures[J]. , 2011, 32(S1): 520 -0525 .
[4] YAN Zhi-hua, LIU Zhi-wei, LIU Hou-jian. Treatment and parameter selection of high slope of a power plant located in the terraces of Yellow River[J]. , 2009, 30(S2): 465 -468 .
[5] XU Zhen-hao , LI Shu-cai , LI Li-ping , HOU Jian-gang , SUI Bin , SHI Shao-shuai. Risk assessment of water or mud inrush of karst tunnels based on analytic hierarchy process[J]. , 2011, 32(6): 1757 -1766 .
[6] WEN Shi-qing , LIU Han-long , CHEN Yu-min. Analysis of load transfer characteristics of single grouted gravel pile[J]. , 2011, 32(12): 3637 -3641 .
[7] LI Shun-qun ,GAO Ling-xia ,CHAI Shou-xi. Significance and interaction of factors on mechanical properties of frozen soil[J]. , 2012, 33(4): 1173 -1177 .
[8] ZHONG Sheng ,WANG Chuan-ying ,WU Li-xin ,TANG Xin-jian ,WANG Qing-yuan. Borehole radar response characteristics of point unfavorable geo-bodies: forward simulation of its surrounding rock and filling condition[J]. , 2012, 33(4): 1191 -1195 .
[9] MENG Zhen, CHEN Jin-jian, WANG Jian-hua, YIN Zhen-yu. Study of model test on bearing capacity of screw piles in sand[J]. , 2012, 33(S1): 141 -145 .
[10] LUO Gang , HU Xie-wen , GU Cheng-zhuang . Study of kinetic failure mechanism and starting velocity of consequent rock slopes under strong earthquake[J]. , 2013, 34(2): 483 -490 .