›› 2017, Vol. 38 ›› Issue (1): 272-276.doi: 10.16285/j.rsm.2017.01.034

• Numerical Analysis • Previous Articles     Next Articles

A new method for rock porosity inversion based on in-situ permeability test

CAO Yuan1, NIU Guan-yi1, WANG Tie-liang1, WANG Ying-jie2   

  1. 1. Fifth Department, Northwest Institute of Nuclear Technology, Xi’an, Shaaxi 710024, China; 2. Optical Communication Laboratory, Xi’an Communication Institute, Xi’an, Shaaxi 710106, China
  • Received:2015-09-18 Online:2017-01-11 Published:2018-06-05
  • Supported by:

    This work was supported by the National Science Foundation of China (91330205).

Abstract: To obtain the in-situ porosity of rock, a transient gas seepage model with main parameters of porosity and permeability is developed from an in-situ steady-state permeability test. A porosity inversion model is constructed based on genetic algorithm. Rock permeability and transient pressure decline data obtained from in-situ permeability tests are adopted as known variable and observational data respectively. Then a new method is formed to determine rock porosity inversion. The effect of porosity results from a typical site on the pressure decline curve and the feasibility of porosity inversion is analyzed. A parallel porosity inversion program is conducted, and then the porosities of rock at two holes are inversely calculated using the mainframe computer. Finally, the correctness of inversion results is verified by numerical simulation and laboratory measurement. As the in-situ test method has small damage to rock and its pore structure, the results of porosity by inversion method has better area representation than those by laboratory measurement, so that the inversion result can be applied to numerical simulation of gas leakage in rocks.

Key words: in-situ test, permeability, porosity, inversion

CLC Number: 

  • O 357.3

[1] WANG Ke, SHENG Jin-chang, GAO Hui-cai, TIAN Xiao-dan, ZHAN Mei-li, LUO Yu-long, . Study on seepage characteristics of rough crack under coupling of stress-seepage erosion [J]. Rock and Soil Mechanics, 2020, 41(S1): 30-40.
[2] GUI Yue, WU Cheng-kun, ZHAO Zhen-xing, LIU Sheng-jun, LIU Rui, ZHANG Qiu-min. Effects of microbial decomposition of organic matter on engineering properties of peat soil [J]. Rock and Soil Mechanics, 2020, 41(S1): 147-155.
[3] LIU Quan-sheng, WANG Dong, ZHU Yuan-guang, YANG Zhan-biao, BO Yin. Application of support vector regression algorithm in inversion of geostress field [J]. Rock and Soil Mechanics, 2020, 41(S1): 319-328.
[4] MAO Jia-hua, YUAN Da-jun, YANG Jiang-xiao, ZHANG Bing, . A theoretical study of porosity characteristics on the excavation face of slurry shield in sand stratum [J]. Rock and Soil Mechanics, 2020, 41(7): 2283-2292.
[5] SHAO Chang-yue, PAN Peng-zhi, ZHAO De-cai, YAO Tian-bo, MIAO Shu-ting, YU Pei-yang, . Effect of pumping rate on hydraulic fracturing breakdown pressure and pressurization rate [J]. Rock and Soil Mechanics, 2020, 41(7): 2411-2421.
[6] WANG Gang, QIN Xiang-jie, JIANG Cheng-hao, ZHANG Zhen-yu. Simulations of temperature effects on seepage and deformation of coal microstructure in 3D CT reconstructions [J]. Rock and Soil Mechanics, 2020, 41(5): 1750-1760.
[7] YANG Yan-shuang, ZHOU Hui, MEI Song-hua, ZHANG Zhan-rong, LI Jin-lan. A case study of the excavation damage zone expansion time effect in hard brittle country rock under high geostress: characteristics and mechanism [J]. Rock and Soil Mechanics, 2020, 41(4): 1357-1365.
[8] LIU Hua, HE Jiang-tao, ZHAO Qian, WANG Tie-hang, GUO Chao-yi, . Experimental study on evolution of micro-permeability characteristics of acid-contaminated undisturbed loess [J]. Rock and Soil Mechanics, 2020, 41(3): 765-772.
[9] LI Hua, LI Tong-lu, JIANG Rui-jun, FAN Jiang-wen. Measurement of unsaturated permeability curve using filter paper method [J]. Rock and Soil Mechanics, 2020, 41(3): 895-904.
[10] SHENG Jian-long, HAN Yun-fei, YE Zu-yang, CHENG Ai-ping, HUANG Shi-bing, . Relative permeability model for water-air two-phase flow in rough-walled fractures and numerical analysis [J]. Rock and Soil Mechanics, 2020, 41(3): 1048-1055.
[11] LI Kang, WANG Wei, YANG Dian-sen, CHEN Wei-zhong, QI Xian-yin , TAN Cai. Application of periodic oscillation method in low permeability measurement [J]. Rock and Soil Mechanics, 2020, 41(3): 1086-1094.
[12] LI Hong-po, CHEN Zheng, FENG Jian-xue, MENG Yu-han, MEI Guo-xiong, . Study on position optimization of horizontal drainage sand blanket of double-layer foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 437-444.
[13] XU Jie, ZHOU Jian, LUO Ling-hui, YU Liang-gui, . Study on anisotropic permeability model for mixed kaolin-montmorillonite clays [J]. Rock and Soil Mechanics, 2020, 41(2): 469-476.
[14] YANG Fu-jian, HU Da-wei, TIAN Zhen-bao, ZHOU Hui, LU Jing-jing, LUO Yu-jie, GUI Shu-qiang, . Evolution and mechanism of permeability of unconsolidated sandstone under high hydrostatic pressure compaction [J]. Rock and Soil Mechanics, 2020, 41(1): 67-77.
[15] YIN Guang-zhi, LU Jun, ZHANG Dong-ming, LI Ming-hui, DENG Bo-zhi, LIU Chao, . Study on plastic zone and permeability-increasing radius of borehole surrounding rock under true triaxial stress conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!