Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (1): 67-77.doi: 10.16285/j.rsm.2018.2279

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Evolution and mechanism of permeability of unconsolidated sandstone under high hydrostatic pressure compaction

YANG Fu-jian1, 2, HU Da-wei1, 2, TIAN Zhen-bao3, ZHOU Hui1, 2, LU Jing-jing1, 2, LUO Yu-jie1, 2, GUI Shu-qiang4   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Huadong Engineering Corporation Limited, China Power Engineering Consulting Group Corporation, Hangzhou ,Zhejiang 310014, China 4. Changjiang Institute of Survey, Planning, Design and Research, Wuhan, Hubei430010, China
  • Received:2018-12-17 Revised:2019-04-30 Online:2020-01-13 Published:2020-01-05
  • About author:First author: YANG Fu-jian, male, (1995-), doctoral candidate, majoring in rock mechanics and engineering. E-mail: fjYangUCAS@163.com Corresponding author: HU Da-wei, male, (1981-), PhD, Professor, research interest: multi-field coupling of underground engineering. E-mail: dwhu@whrsm.ac.cn
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51479193, 51779252), the Major Program of Technological Innovation of Hubei Province (2017AAA128) and CAS Pioneer Hundred Talents Program (2015).

Abstract: The unconsolidated sandstone in hydrothermal geothermal field in Jianghan basin is taken as the research object. The hydrostatic pressure is applied to a geostress equal to 12.5 MPa. After the deformation of sample is stabilised, the evolution and mechanism of the permeability of unconsolidated sandstone under the compaction of high hydrostatic pressure are studied, which can provide some suggestions for the selection of equipment operating parameters for the tailwater recharge process in the hydrothermal geothermal field. The results indicate that under high hydrostatic pressure compaction, the permeability of unconsolidated sandstone samples tends to be a constant valued of 4.0×10?3 ?m2 within the current range of 0.5 mL/min to 3.0 mL/min. The pressure difference between the two ends of the sample increases nonlinearly with time and the degree of nonlinearity gradually increases with the increase of flow rate, but eventually tends to be stabilised. In addition, the sample of unconsolidated sandstone forms a tubular erosion channel in the direction of penetration, extending to about 2/3 of the sample. Based on the stop time of particle transportation and the extension length of tubular erosion channel in the penetration direction, the average migration velocities of particles under different flow rates are determined. It is found that the particle migration velocity increases exponentially with the increase of flow rate, and the amount of microparticle migrated per unit time increases. When the pressure difference exceeds about 1/2 of the hydrostatic pressure, the sample presents erosion damage and upstream diameter shrinkage.

Key words: high hydrostatic pressure, unconsolidated sandstone, permeability, suffusion, particle migration

CLC Number: 

  • TU 411.91
[1] WANG Ke, SHENG Jin-chang, GAO Hui-cai, TIAN Xiao-dan, ZHAN Mei-li, LUO Yu-long, . Study on seepage characteristics of rough crack under coupling of stress-seepage erosion [J]. Rock and Soil Mechanics, 2020, 41(S1): 30-40.
[2] GUI Yue, WU Cheng-kun, ZHAO Zhen-xing, LIU Sheng-jun, LIU Rui, ZHANG Qiu-min. Effects of microbial decomposition of organic matter on engineering properties of peat soil [J]. Rock and Soil Mechanics, 2020, 41(S1): 147-155.
[3] SHAO Chang-yue, PAN Peng-zhi, ZHAO De-cai, YAO Tian-bo, MIAO Shu-ting, YU Pei-yang, . Effect of pumping rate on hydraulic fracturing breakdown pressure and pressurization rate [J]. Rock and Soil Mechanics, 2020, 41(7): 2411-2421.
[4] ZHANG Sheng, GAO Feng, CHEN Qi-lei, SHENG Dai-chao, . Experimental study of fine particles migration mechanism of sand-silt mixtures under train load [J]. Rock and Soil Mechanics, 2020, 41(5): 1591-1598.
[5] LIU Hua, HE Jiang-tao, ZHAO Qian, WANG Tie-hang, GUO Chao-yi, . Experimental study on evolution of micro-permeability characteristics of acid-contaminated undisturbed loess [J]. Rock and Soil Mechanics, 2020, 41(3): 765-772.
[6] LI Hua, LI Tong-lu, JIANG Rui-jun, FAN Jiang-wen. Measurement of unsaturated permeability curve using filter paper method [J]. Rock and Soil Mechanics, 2020, 41(3): 895-904.
[7] SHENG Jian-long, HAN Yun-fei, YE Zu-yang, CHENG Ai-ping, HUANG Shi-bing, . Relative permeability model for water-air two-phase flow in rough-walled fractures and numerical analysis [J]. Rock and Soil Mechanics, 2020, 41(3): 1048-1055.
[8] LI Kang, WANG Wei, YANG Dian-sen, CHEN Wei-zhong, QI Xian-yin , TAN Cai. Application of periodic oscillation method in low permeability measurement [J]. Rock and Soil Mechanics, 2020, 41(3): 1086-1094.
[9] LI Hong-po, CHEN Zheng, FENG Jian-xue, MENG Yu-han, MEI Guo-xiong, . Study on position optimization of horizontal drainage sand blanket of double-layer foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 437-444.
[10] XU Jie, ZHOU Jian, LUO Ling-hui, YU Liang-gui, . Study on anisotropic permeability model for mixed kaolin-montmorillonite clays [J]. Rock and Soil Mechanics, 2020, 41(2): 469-476.
[11] YIN Guang-zhi, LU Jun, ZHANG Dong-ming, LI Ming-hui, DENG Bo-zhi, LIU Chao, . Study on plastic zone and permeability-increasing radius of borehole surrounding rock under true triaxial stress conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 1-10.
[12] LIU Li, WU Yang, CHEN Li-hong, LIU Jian-kun, . Accuracy analysis of wetting front advancing method based on numerical simulation [J]. Rock and Soil Mechanics, 2019, 40(S1): 341-349.
[13] DING Chang-dong, ZHANG Yang, YANG Xiang-tong, HU Da-wei, ZHOU Hui, LU Jing-jing, . Permeability evolution of tight sandstone under high confining pressure and high pore pressure and its microscopic mechanism [J]. Rock and Soil Mechanics, 2019, 40(9): 3300-3308.
[14] WANG Chong, HU Da-wei, REN Jin-ming, ZHOU Hui, LU Jing-jing, LIU Chuan-xin, . Influence of erosive environment on permeability and mechanical properties of underground structures [J]. Rock and Soil Mechanics, 2019, 40(9): 3457-3464.
[15] LI Ling, LIU Jin-quan, LIU Zao-bao, LIU Tao-gen, WANG Wei, SHAO Jian-fu, . Experimental investigations on compaction properties of sand-clay mixture at high pressure [J]. Rock and Soil Mechanics, 2019, 40(9): 3502-3514.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!