Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (5): 1591-1598.doi: 10.16285/j.rsm.2019.0690

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of fine particles migration mechanism of sand-silt mixtures under train load

ZHANG Sheng1, 2, GAO Feng1, 2, CHEN Qi-lei2, SHENG Dai-chao2, 3   

  1. 1. National Engineering Laboratory for Construction Technology of High Speed Railway, Central South University, Changsha, Hunan 410075, China; 2. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 3. School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia
  • Received:2019-04-16 Revised:2019-09-10 Online:2020-05-11 Published:2020-07-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51722812), the Science Foundation for Distinguished Young Scholars of Hunan Province (2017JJ1033) and the Autonomous Exploration Project of Central South University (2019zzts293).

Abstract: The study of dynamic-hydraulic characteristics and fine particle migration of sand-silt mixtures under load is the basis and key for analyzing the mesoscopic disaster-causing mechanism and evolution mechanism of natural or engineering disasters such as vibration liquefaction and mud pumping etc. The experimental study on fine particles migration mechanism of saturated sand-silt mixtures under combined dynamic-static train load was carried out by using the self-developed test system. The experimental results show that the axial deformation of the sample exhibits a “stepped” change trend. The total stress distribution shows an exponential decrease with increasing depth. The pore water pressure in the sample experiences the cyclic process of accumulation under dynamic loading and dissipation under static loading. In this process, the axial gradient of pore water pressure gradually forms a "pumping" effect on pore water, which causes the migration of fine particles and water. Furthermore, by analyzing the composition change of three particle size groups contents and effective diameter d10 of different layers of the sample, it is analyzed the combined dynamic-static loads affect fine particle migration in saturated sand-silt mixtures.

Key words: cyclic loading, test system, sand-silt mixtures, fine particle migration, pore water pressure

CLC Number: 

  • TU 411
[1] LI Da-yong, ZHANG Jing-rui, ZHANG Yu-kun, GAO Yu-feng, LIU Jun-wei. Bearing behavior and accumulated rotation of modified suction caisson (MSC) in saturated sand under cyclic loading [J]. Rock and Soil Mechanics, 2021, 42(3): 611-619.
[2] ZHANG Ji-meng, ZHANG Chen-rong, ZHANG Kai, . Model tests of large-diameter single pile under horizontal cyclic loading in sand [J]. Rock and Soil Mechanics, 2021, 42(3): 783-789.
[3] DENG Hua-feng, FANG Jing-cheng, LI Jian-lin, LI Guan-ye, QI Yu, XU Xiao-liang. Damage evolution of dynamic characteristics of sandstone under the sequential action of water-rock interaction and cyclic loading and unloading [J]. Rock and Soil Mechanics, 2021, 42(2): 343-351.
[4] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong. Effect of pore water pressure on shear creep characteristics of serrate structural plane [J]. Rock and Soil Mechanics, 2020, 41(9): 2901-2912.
[5] DING Chu, YU Wen-rui, SHI Jiang-wei, ZHANG Yu-ting, CHEN Yong-hui, . Centrifuge studies of pile deformation mechanisms due to lateral cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(8): 2659-2664.
[6] ZHANG Xiao-ling, ZHU Dong-zhi, XU Cheng-shun, DU Xiu-li, . Research on p-y curves of soil-pile interaction in saturated sand foundation in weakened state [J]. Rock and Soil Mechanics, 2020, 41(7): 2252-2260.
[7] ZHUANG Xin-shan, ZHAO Han-wen, WANG Jun-xiang, HUANG Yong-jie, HU Zhi . Quantitative research on morphological characteristics of hysteretic curves of remolded weak expansive soil under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(6): 1845-1854.
[8] ZHAO Jun, GUO Guang-tao, XU Ding-ping, HUANG Xiang, HU Cai, XIA Yue-lin, ZHANG Di. Experimental study of deformation and failure characteristics of deeply-buried hard rock under triaxial and cyclic loading and unloading stress paths [J]. Rock and Soil Mechanics, 2020, 41(5): 1521-1530.
[9] LI Xiao-xuan, LI Tao, LI Jian, ZHANG Tao. An elastoplastic two-surface model for unsaturated structural clays under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(4): 1153-1160.
[10] LI Zong-ze, JIANG De-yi, FAN Jin-yang, CHEN Jie, LIU Wei, WU Fei, DU Chao, KANG Yan-fei. Experimental study of triaxial interval fatigue of salt rock [J]. Rock and Soil Mechanics, 2020, 41(4): 1305-1312.
[11] SHI Xu-chao, SUN Yun-de. Analysis of the evolution of excess pore water pressure in soft soil under linear unloading [J]. Rock and Soil Mechanics, 2020, 41(4): 1333-1338.
[12] BI Zong-qi, GONG Quan-mei, ZHOU Shun-hua, CHENG Qian, . Experimental study of the evolution law of vertical soil arch under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(3): 886-894.
[13] MA Wei-jia, CHEN Guo-xing, WU Qi, . Experimental study on liquefaction resistance of coral sand under complex loading conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 535-542.
[14] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[15] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[2] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[3] CHU Xi-hua, XU Yuan-jie. Studies on transformation from M-C criterion to Drucker-Prager criterions based on distortion energy density[J]. , 2009, 30(10): 2985 -2990 .
[4] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[5] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[6] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .
[7] LI Shao-long, ZHANG Jia-fa, ZHANG Wei, XIAO Li. Study of spatial variability and stochastic modeling of surface soil permeability[J]. , 2009, 30(10): 3168 -3172 .
[8] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .
[9] CUI Hao-dong, ZHU Yue-ming. Back analysis of seepage field of Ertan high arch dam foundation[J]. , 2009, 30(10): 3194 -3199 .
[10] JIA Yu-feng,CHI Shi-chun,LIN Gao. Constitutive model for coarse granular aggregates incorporating particle breakage[J]. , 2009, 30(11): 3261 -3266 .