Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (8): 2659-2664.doi: 10.16285/j.rsm.2019.1830

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Centrifuge studies of pile deformation mechanisms due to lateral cyclic loading

DING Chu1, YU Wen-rui2, SHI Jiang-wei1, ZHANG Yu-ting3, CHEN Yong-hui1   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210024, China; 2. CCCC Fourth Highway (Beijing) Highway Test Checking Technology Co., Ltd., Beijing 100025, China; 3. Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin 300456, China
  • Received:2019-10-23 Revised:2020-03-04 Online:2020-08-14 Published:2020-10-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51608170).

Abstract: Because of long-term cyclic loads resulting from waves and ships, additional stress and deformation are inevitably induced in existing piles. Centrifugal model tests are conducted in this study to investigate deformation mechanisms of single piles and pile group embedded in saturated clay due to lateral cyclic loading. It is found that the horizontal cyclic loading-unloading induces plastic deformation of the soil around the pile, which in turn leads to unrecoverable horizontal displacement and bending deformation of the pile. As the cyclic loading increases, the maximum pile head horizontal displacement and residual pile head horizontal displacements increase as well, but the residual pile head horizontal displacement is much smaller than maximum pile head horizontal displacement. For single piles and a pile group, ratios of the residual lateral displacements to the maximum lateral displacements range from 0.17–0.22 and 0.30–0.84, respectively. The residual bending strains are also much smaller than the maximum bending strains. For single piles and a pile group, ratios of the residual to the maximum bending strains induced in the piles vary from 0.13 to 0.50 and 0.23 to 0.82, respectively. The maximum and residual bending strains induced in the front piles are up to 3.2 and 3.1 times as large as those in the rear piles. Thus, protection measures should be used for the front piles to ensure long-term serviceability of pile foundations.

Key words: centrifugal model test, cyclic loading, lateral displacement, bending strain

CLC Number: 

  • TU 473
[1] LI Da-yong, ZHANG Jing-rui, ZHANG Yu-kun, GAO Yu-feng, LIU Jun-wei. Bearing behavior and accumulated rotation of modified suction caisson (MSC) in saturated sand under cyclic loading [J]. Rock and Soil Mechanics, 2021, 42(3): 611-619.
[2] ZHANG Ji-meng, ZHANG Chen-rong, ZHANG Kai, . Model tests of large-diameter single pile under horizontal cyclic loading in sand [J]. Rock and Soil Mechanics, 2021, 42(3): 783-789.
[3] DENG Hua-feng, FANG Jing-cheng, LI Jian-lin, LI Guan-ye, QI Yu, XU Xiao-liang. Damage evolution of dynamic characteristics of sandstone under the sequential action of water-rock interaction and cyclic loading and unloading [J]. Rock and Soil Mechanics, 2021, 42(2): 343-351.
[4] ZHUANG Xin-shan, ZHAO Han-wen, WANG Jun-xiang, HUANG Yong-jie, HU Zhi . Quantitative research on morphological characteristics of hysteretic curves of remolded weak expansive soil under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(6): 1845-1854.
[5] ZHAO Jun, GUO Guang-tao, XU Ding-ping, HUANG Xiang, HU Cai, XIA Yue-lin, ZHANG Di. Experimental study of deformation and failure characteristics of deeply-buried hard rock under triaxial and cyclic loading and unloading stress paths [J]. Rock and Soil Mechanics, 2020, 41(5): 1521-1530.
[6] ZHANG Sheng, GAO Feng, CHEN Qi-lei, SHENG Dai-chao, . Experimental study of fine particles migration mechanism of sand-silt mixtures under train load [J]. Rock and Soil Mechanics, 2020, 41(5): 1591-1598.
[7] LI Xiao-xuan, LI Tao, LI Jian, ZHANG Tao. An elastoplastic two-surface model for unsaturated structural clays under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(4): 1153-1160.
[8] LI Zong-ze, JIANG De-yi, FAN Jin-yang, CHEN Jie, LIU Wei, WU Fei, DU Chao, KANG Yan-fei. Experimental study of triaxial interval fatigue of salt rock [J]. Rock and Soil Mechanics, 2020, 41(4): 1305-1312.
[9] TANG Ming-gao, LI Song-lin, XU Qiang, GONG Zheng-feng, ZHU Quan, WEI Yong. Study of deformation characteristics of reservoir landslide based on centrifugal model test [J]. Rock and Soil Mechanics, 2020, 41(3): 755-764.
[10] BI Zong-qi, GONG Quan-mei, ZHOU Shun-hua, CHENG Qian, . Experimental study of the evolution law of vertical soil arch under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(3): 886-894.
[11] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[12] MA Wei-jia, CHEN Guo-xing, WU Qi, . Experimental study on liquefaction resistance of coral sand under complex loading conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 535-542.
[13] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[14] CAI Zheng-yin, DAI Zhi-yu, XU Guang-ming, REN Guo-feng. Effect of particle size and compaction on K0 value of sand by centrifugal model test [J]. Rock and Soil Mechanics, 2020, 41(12): 3882-3888.
[15] CHEN Jia-ying, TENG Jing-cheng, YIN Zhen-yu, . Macroelement modelling of caisson foundation in clay [J]. Rock and Soil Mechanics, 2020, 41(11): 3823-3830.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[2] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[3] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[4] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[5] KANG Hou-rong, LEI Ming-tang, ZHANG Xie-dong, ZHAO Jie-hua. Karst environment zoning for highway engineering of Guizhou Province[J]. , 2009, 30(10): 3032 -3036 .
[6] CHEN Zhong-xue, WANG Ren, HU Ming-jian, WEI Hou-zhen, WANG Xin-zhi. Study of internal factors for debris flow occurrence in Jianjia Ravine, Dongchun of Yunnan[J]. , 2009, 30(10): 3053 -3056 .
[7] LENG Wu-ming, YANG Qi, LIU Qing-tan, NIE Ru-song. Study of new method for calcutating response of piled bridge abutment in soft ground[J]. , 2009, 30(10): 3079 -3085 .
[8] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[9] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .
[10] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .