Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (3): 1086-1094.doi: 10.16285/j.rsm.2019.0501

• Testing Technology • Previous Articles    

Application of periodic oscillation method in low permeability measurement

LI Kang1, 2, WANG Wei1, 2, YANG Dian-sen1, CHEN Wei-zhong1, QI Xian-yin3 , TAN Cai4   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Urban Construction, Yangtze University, Jingzhou, Hubei 434000, China; 4. Guangdong Research Institute of Water Resources and Hydropower, Guangzhou, Guangdong 510610, China
  • Received:2019-03-12 Revised:2019-07-29 Online:2020-03-11 Published:2020-05-26
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51879260, 41572290) and Shenzhen Water Supplies Special Funds for Science and Technology Innovation Project(20170103).

Abstract: Periodic oscillation method is a new method for permeability measurement of porous media. It exhibits advantages of short testing period, good stability and high precision. However, it has not been widely used for low permeability measurement in laboratory due to lack of systematic research. In this paper, the effects of different porosities and medium permeabilities on the permeability measurement results of the periodic oscillation method are numerically analyzed. In addition, the applicability of different forms of periodic waves in the permeability measurement is discussed. Conclusions from the study results can be drawn as follows. First, both the porosity and permeability can affect the process of gas pressure transfer. Second, the initial pressure equilibrium process in medium may not be needed for the periodic oscillation method as the measurement results are almost unaffected by the initial pressure distribution after a certain period of time. Third, compared with sinusoidal wave, square wave exhibits a more notable influence on the pressure response of the downstream gas. Moreover, it is observed that square wave, triangular wave and sawtooth wave are easier to be loaded in practice. Finally, based on the numerical analysis, it is suggested to use the square wave instead of sinusoidal wave in the periodic oscillation method. This study will be helpful to guide the application of the periodic oscillation method test in low permeability measurement.

Key words: permeability, periodic oscillation method, low permeability measurement, periodic wave, numerical simulation, porosity

CLC Number: 

  • TE319
[1] ZHU Chun, HE Man-chao, ZHANG Xiao-hu, TAO Zhi-gang, YIN Qian, LI Li-feng, . Nonlinear mechanical model of constant resistance and large deformation bolt and influence parameters analysis of constant resistance behavior [J]. Rock and Soil Mechanics, 2021, 42(7): 1911-1924.
[2] LIANG Bing, ZHANG Chai, LIU Lei, CHEN Feng, . Field permeability measurement of waste and inversion of soil-water characteristics [J]. Rock and Soil Mechanics, 2021, 42(6): 1493-1500.
[3] FU He-lin, AN Peng-tao, LI Kai, CHENG Guo-wen, LI Jie, YU Xiao-hui, . Analysis of influence of surrounding rock heterogeneity on water inrush in tunnel [J]. Rock and Soil Mechanics, 2021, 42(6): 1519-1528.
[4] LU Yang, LIU Si-hong, ZHANG Yong-gan, YANG Meng. Experimental study and mechanism analysis of permeability performance of clayey soil-rock mixtures [J]. Rock and Soil Mechanics, 2021, 42(6): 1540-1548.
[5] DENG Shen-yuan, JIANG Qing-hui, SHANG Kai-wei, JING Xiang-yang, XIONG Feng, . Effect of high temperature on micro-structure and permeability of granite [J]. Rock and Soil Mechanics, 2021, 42(6): 1601-1611.
[6] WANG Ying, ZHANG Hu-yuan, TONG Yan-mei, ZHOU Guang-ping, . Influence of joint sealing material on the sealing performance of the buffer block barrier [J]. Rock and Soil Mechanics, 2021, 42(6): 1648-1658.
[7] JU Yuan-jiang, HU Ming-jian, QIN Kun-kun, SONG Bo, SUN Zi-chen, . Experimental study of filtration & fine particles migration of calcareous sand in coral reef island [J]. Rock and Soil Mechanics, 2021, 42(5): 1245-1253.
[8] LI Yue, XU Wei-ya, YI Kui, XIE Wei-chao, ZHANG Qiang, MENG Qing-xiang, . Experimental study of unsaturated-saturated permeability characteristics of slip soil in landslide deposits [J]. Rock and Soil Mechanics, 2021, 42(5): 1355-1362.
[9] ZHANG Le, DANG Fa-ning, GAO Jun, DING Jiu-long. Experimental study on the one-dimensional nonlinear consolidation and seepage of saturated clay considering stress history under ramp loading [J]. Rock and Soil Mechanics, 2021, 42(4): 1078-1087.
[10] WANG Zhao-yao, LIU Hong-jun, YANG Qi, ZHAO Zhen, HU Rui-geng, . Local scour of large diameter monopile under combined waves and currents [J]. Rock and Soil Mechanics, 2021, 42(4): 1178-1185.
[11] CHEN Meng, CUI Xiu-wen, YAN Xin, WANG Hao, WANG Er-lei, . Prediction model for compressive strength of rock-steel fiber reinforced concrete composite layer [J]. Rock and Soil Mechanics, 2021, 42(3): 638-646.
[12] LIU Hai-feng, ZHENG Kun, ZHU Chang-qi, MENG Qing-shan, WU Wen-juan. Brittleness evaluation of coral reef limestone base on stress-strain curve [J]. Rock and Soil Mechanics, 2021, 42(3): 673-680.
[13] SHI Feng, LU Kun-lin, YIN Zhi-kai. Determination of three-dimensional passive slip surface of rigid retaining walls in translational failure mode and calculation of earth pressures [J]. Rock and Soil Mechanics, 2021, 42(3): 735-745.
[14] JIANG Wen-hao, ZHAN Liang-tong. Large strain consolidation of sand-drained ground considering the well resistance and the variation of radial permeability coefficient [J]. Rock and Soil Mechanics, 2021, 42(3): 755-766.
[15] LI Ying, CHEN Dong, LIU Xing-wang, XIE Xi-rong, TONG Xing, ZHANG Jin-hong. Simplified calculation method of decompression dewatering for deep excavation with suspended waterproof curtain [J]. Rock and Soil Mechanics, 2021, 42(3): 826-832.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[3] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[4] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[5] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[6] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .
[7] GONG Wei-ming, HUANG Ting, DAI Guo-liang. Experimental study of key parameters of high piled foundation for offshore wind turbine[J]. , 2011, 32(S2): 115 -121 .
[8] WANG Cheng-bing. Laboratory and numerical investigation on failure process of tunnel constructed in homogeneous rock[J]. , 2012, 33(1): 103 -108 .
[9] SONG Yi-min , JIANG Yao-dong , MA Shao-peng , YANG Xiao-bin , ZHAO Tong-bin . Evolution of deformation fields and energy in whole process of rock failure[J]. , 2012, 33(5): 1352 -1356 .
[10] XIA Yan-hua , BAI Shi-wei . Study of building 3D complex strata model based on level set methods and application to underground engineering[J]. , 2012, 33(5): 1445 -1450 .