Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (5): 1245-1253.doi: 10.16285/j.rsm.2020.1271

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of filtration & fine particles migration of calcareous sand in coral reef island

JU Yuan-jiang1, 2, HU Ming-jian1, QIN Kun-kun1, 2, SONG Bo2, SUN Zi-chen2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Received:2020-08-22 Revised:2021-01-08 Online:2021-05-11 Published:2021-05-07
  • Supported by:
    This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA13010301).

Abstract: Due to its unique biogenesis, forming environment and deposition process, calcareous sand is featured with irregularity, brittleness, weak structure and low cohesion, and is considered substantially different from the common terrestrial sand deposits. Fine particles bonded with weak cohesion may be resolved by osmotic action and then migrate and reaccumulate, thus causing changes in porosity and permeability. This study has carried out filtration experiment and laser particle size analysis of exudate sediment under different initial conditions to analyze the principles of evolution, involving permeability coefficient and the characteristics of fine particle transporting during the filtration process in calcareous sand. The results show that the loss of fine particles tends to occur under the seepage condition, and that results in the local changes of soil structure and permeability. The factors including the grading, compactness and percolation hydraulic gradient play important roles in fine grain loss in the process of filtration. The results show that the higher soil coarse grain content is, the lower degree of compactness is, and the larger percolation hydraulic gradient is, which lead to the loss of fine particles easily and additionally, enlarging the size of losing particles as well as range of permeability variation. The main particle size range of fine grain loss during calcareous sand filtration is significantly affected by grading. The smaller the content of coarse grain in grading results in smaller particle size of grain loss, and vice versa.

Key words: coral islands, calcareous sand, filtration, fine particle migration, permeability coefficient

CLC Number: 

  • TU 411
[1] LIU Li, WU Yang, LI Xu, ZHAO Yu-xin, . Influence of compaction on hydraulic properties of widely-graded soil [J]. Rock and Soil Mechanics, 2021, 42(9): 2545-2555.
[2] ZHAO Zhi-qiang, DAI Fu-chu, MIN Hong, TAN Ye, . Research on infiltration process in undisturbed loess-paleosol sequence [J]. Rock and Soil Mechanics, 2021, 42(9): 2611-2621.
[3] WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, GAO Lu-chao, . Experimental study on micro-erosion mechanism of cement stabilized calcareous sand under seawater environment [J]. Rock and Soil Mechanics, 2021, 42(7): 1871-1882.
[4] RAO Pei-sen, LI Dan , MENG Qing-shan, WANG Xin-zhi, FU Jin-xin, LEI Xue-wen, . Study on earth pressure distribution characteristics of calcareous sand foundation under cyclic loading [J]. Rock and Soil Mechanics, 2021, 42(6): 1579-1586.
[5] ZHANG Le, DANG Fa-ning, GAO Jun, DING Jiu-long. Experimental study on the one-dimensional nonlinear consolidation and seepage of saturated clay considering stress history under ramp loading [J]. Rock and Soil Mechanics, 2021, 42(4): 1078-1087.
[6] DONG Bo-wen, LIU Shi-yu, YU Jin, XIAO Yang, CAI Yan-yan, TU Bing-xiong, . Evaluation of the effect of natural seawater strengthening calcareous sand based on MICP [J]. Rock and Soil Mechanics, 2021, 42(4): 1104-1114.
[7] JIANG Wen-hao, ZHAN Liang-tong. Large strain consolidation of sand-drained ground considering the well resistance and the variation of radial permeability coefficient [J]. Rock and Soil Mechanics, 2021, 42(3): 755-766.
[8] LI Ying, CHEN Dong, LIU Xing-wang, XIE Xi-rong, TONG Xing, ZHANG Jin-hong. Simplified calculation method of decompression dewatering for deep excavation with suspended waterproof curtain [J]. Rock and Soil Mechanics, 2021, 42(3): 826-832.
[9] WANG Li, LI Gao, CHEN Yong, TAN Jian-min, WANG Shi-mei, GUO Fei, . Field model test on failure mechanism of artificial cut-slope rainfall in Southern Jiangxi [J]. Rock and Soil Mechanics, 2021, 42(3): 846-854.
[10] WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, GAO Lu-chao, XU Yi-fei, . Experimental study on lateral bearing behavior of post-grouted piles in calcareous sand [J]. Rock and Soil Mechanics, 2021, 42(2): 411-418.
[11] YANG Zhi-hao, YUE Zu-run, FENG Huai-ping, YE Chao-liang, ZHOU Jiang-tao, JIE Shao-long, . Experimental study of permeability properties of graded macadam in heavy haul railway subgrade bed surface layer [J]. Rock and Soil Mechanics, 2021, 42(1): 193-202.
[12] LI Ji-wei, LIN Fa-li, WEI Chang-fu, WANG Hua-bin, CHEN Pan, ZHU Zan-cheng, LIU Zi-zhen, . Explicit solution of horizontal infiltration equation in unsaturated soils [J]. Rock and Soil Mechanics, 2021, 42(1): 203-210.
[13] GUI Yue, WU Cheng-kun, ZHAO Zhen-xing, LIU Sheng-jun, LIU Rui, ZHANG Qiu-min. Effects of microbial decomposition of organic matter on engineering properties of peat soil [J]. Rock and Soil Mechanics, 2020, 41(S1): 147-155.
[14] PAN Yong-liang, JIAN Wen-xing, LI Lin-jun, LIN Yu-qiu, TIAN Peng-fei. A study on the rainfall infiltration of granite residual soil slope with an improved Green-Ampt model [J]. Rock and Soil Mechanics, 2020, 41(8): 2685-2692.
[15] LIN Lan, LI Sa, SUN Li-qiang, LIU Xiao-long, CHEN Wen-wei, . Study of relative compaction for calcareous sand soil using dynamic cone penetration test [J]. Rock and Soil Mechanics, 2020, 41(8): 2730-2738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[6] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[7] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[8] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[9] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[10] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .