Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (9): 2611-2621.doi: 10.16285/j.rsm.2021.0358

• Numerical Analysis • Previous Articles    

Research on infiltration process in undisturbed loess-paleosol sequence

ZHAO Zhi-qiang1, DAI Fu-chu1, MIN Hong2, TAN Ye1   

  1. 1. Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2021-03-11 Revised:2021-04-26 Online:2021-09-10 Published:2021-08-31
  • Supported by:
    This work was funded by the Major Program of National Natural Science Foundation of China(41790440).

Abstract: Agricultural irrigation in loess platform has led to a continuous rise of the groundwater level and triggered a series of loess landslides. To gain a better understanding of the infiltration behavior of irrigation water in loess, a field infiltration test with a diameter of 20 m was conducted on the South Jingyang tableland, Shaanxi province. The spatiotemporal characteristics of moisture content and matric suction were monitored. Then the infiltration laws under the conditions of soaking and intermittent irrigation were simulated. Results show that the soak infiltration can be divided into three stages, namely, uniform infiltration, preferential flow infiltration, and stable infiltration, respectively. Preferential flow associated with the vertical cracks in the Malan loess was observed when the width of the crack was more than 2 mm and the soil above the crack was saturated. The hydraulic conductivity of the lower part of paleosol layer (S1) was relatively weak compared to the upper part of S1, and a transient perched water was observed above the lower part of S1. The three-dimensional infiltration numerical model was established to reappear the soak infiltration process. Due to the multiple irrigation events, the downward percolation of water was significantly promoted by the superposition effect of wetting front. The infiltration capacity decreased with the increase of depth. The velocity of infiltration below 5.6 m depth was less than the hydraulic conductivity of the soil, the infiltration was driven solely by the gravity, and the moisture content and matric suction were almost unchanged. This finding explains the phenomenon that water infiltration in deep loess is difficult to be monitored in the previous studies.

Key words: loess, field monitoring, irrigation infiltration, moisture content, matric suction

CLC Number: 

  • TU444
[1] LI Yan, LI Tong-lu, HOU Xiao-kun, LI Hua, ZHANG Jie, . Prediction of unsaturated permeability curve of compaction loess with pore-size distribution curve and its application scope [J]. Rock and Soil Mechanics, 2021, 42(9): 2395-2404.
[2] GE Miao-miao, LI Ning, SHENG Dai-chao, ZHU Cai-hui, PINEDA Jubert, . Experimental investigation of microscopic deformation mechanism of unsaturated compacted loess under hydraulic coupling conditions [J]. Rock and Soil Mechanics, 2021, 42(9): 2437-2448.
[3] JIANG Tong, ZHAI Tian-ya, ZHANG Jun-ran, ZHAO Jin-di, WANG Li-jin, SONG Chen-yu, PAN Xu-wei. Diametric splitting tests on loess based on particle image velocimetry technique [J]. Rock and Soil Mechanics, 2021, 42(8): 2120-2126.
[4] LIU Yue, CHEN Dong-xia, WANG Hui, YU Jia-jing, . Response analysis of residual soil slope considering crack development under drying-wetting cycles [J]. Rock and Soil Mechanics, 2021, 42(7): 1933-1943.
[5] ZHANG Chuang, REN Song, ZHANG Ping, LONG Neng-zeng, . Experimental study on Brazilian splitting of phyllite under the coupling effects of water, pore and bedding [J]. Rock and Soil Mechanics, 2021, 42(6): 1612-1624.
[6] ZHAO Kui, RAN Shan-hu, ZENG Peng, YANG Dao-xue, TENG Tian-ye. Effect of moisture content on characteristic stress and acoustic emission characteristics of red sandstone [J]. Rock and Soil Mechanics, 2021, 42(4): 899-908.
[7] LEI Xue-wen, DING Hao, WANG Xin-zhi, SHEN Jian-hua, MENG Qing-shan, . Experimental study of consolidation properties of calcareous silt [J]. Rock and Soil Mechanics, 2021, 42(4): 909-920.
[8] XIONG Zhong-ming, LÜ Shi-hong, LI Yun-liang, ZHAO Qi-feng, LI Jin, TAN Shu-shun, ZHANG Xiang-rong, ZHU Yu-rong, JIANG Lei, YANG Qi-fan, ZHANG Ning-bo, ZHANG Zi-dong. Research on dynamic properties and energy dissipation of loess under passive confining pressure conditions [J]. Rock and Soil Mechanics, 2021, 42(3): 775-782.
[9] LI Bo-bo, WANG Zhong-hui, REN Chong-hong, ZHANG Yao, XU Jiang, LI Jian-hua, . Mechanical properties and damage constitutive model of coal under the coupled hydro-mechanical effect [J]. Rock and Soil Mechanics, 2021, 42(2): 315-323.
[10] AN Ning, YAN Chang-gen, WANG Ya-chong, LAN Heng-xing, BAO Han, XU Jiang-bo, SHI Yu-ling, SUN Wei-feng, . Experimental study on anti-erosion performance of polypropylene fiber-reinforced loess [J]. Rock and Soil Mechanics, 2021, 42(2): 501-510.
[11] JI Wei-wei, KONG Gang-qiang, LIU Han-long, YANG Qing, . Field tests on thermal response characteristics of the tunnel invert in soft plastic loess area [J]. Rock and Soil Mechanics, 2021, 42(2): 558-564.
[12] LIU De-ren, XU Shuo-chang, XIAO Yang, WANG Xu, LI Jian-dong, ZHANG Yan, . Experimental study on the law of water-air migration in compacted loess under the condition of immersion infiltration [J]. Rock and Soil Mechanics, 2021, 42(12): 3260-3270.
[13] HAO Yan-zhou, WANG Tie-hang, CHENG Lei, JIN Xin, . Structural constitutive relation of compacted loess considering the effect of drying and wetting cycles [J]. Rock and Soil Mechanics, 2021, 42(11): 2977-2986.
[14] LI Jian-dong, WANG Xu, ZHANG Yan-jie, JIANG Dai-jun, LIU De-ren, LI Sheng. Study of thermal moisture migration of unsaturated loess with water vapor [J]. Rock and Soil Mechanics, 2021, 42(1): 186-192.
[15] ZHENG Fang, SHAO Sheng-jun, SHE Fang-tao, YUAN Hao, . True triaxial shear tests of remolded loess under different matrix suctions [J]. Rock and Soil Mechanics, 2020, 41(S1): 156-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .