Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (2): 315-323.doi: 10.16285/j.rsm.2020.0848

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Mechanical properties and damage constitutive model of coal under the coupled hydro-mechanical effect

LI Bo-bo1, 2, 3, WANG Zhong-hui1, REN Chong-hong1, ZHANG Yao1, XU Jiang4, LI Jian-hua1   

  1. 1. College of Mining, Guizhou University, Guiyang, Guizhou 550025, China; 2. National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Resources from Karst Areas, Guizhou University, Guiyang, Guizhou 550025, China; 3. Guizhou Key Laboratory of Comprehensive Utilization of Non-metallic Mineral Resources, Guizhou University, Guiyang, Guizhou 550025, China; 4. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
  • Received:2020-06-19 Revised:2020-12-04 Online:2021-02-10 Published:2021-02-09
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52064007,51804085,51911530203).

Abstract: In order to explore the impact of moisture on the mechanical properties of coal, the triaxial compression tests of raw coal with different moisture contents are carried out by using the triaxial servo-controlled seepage equipment for thermal-hydro- mechanical coupling in coal containing methane. Based on elastic damage mechanics, the damage variables of coal with different moisture contents are deduced, and the damage constitutive model of coal under hydro-mechanical coupling is established, the deformation characteristics of coal with different moisture contents are obtained. The results show that: (1) the deformation and failure process of coal under different moisture contents are similar, which can be divided into pre-peak stress stage, post-peak stress stage and residual stress stage; (2) as the moisture content increases, the peak stress, elastic modulus and brittleness of coal decrease, but the Poisson's ratio increases; (3) the damage constitutive model of coal can better represent the deformation characteristics of coal in the complete stress-strain process under different moisture contents, which is suitable for the analysis of the triaxial compressive stress-strain of coal under different moisture contents; (4) both the damage correction coefficient q and the damage constitutive coefficient n determine the curve shape of the damage constitutive model. The damage correction coefficient reflects the characteristics of residual deformation of coal, and the damage constitutive coefficient reflects different degrees of post-peak strain softening of the stress-strain curve.

Key words: coal, damage, moisture content, constitutive relation, coupled hydro-mechanical

CLC Number: 

  • TU 452
[1] JIA Peng, YANG Qi-yao, LIU Dong-qiao, WANG Shu-hong, ZHAO Yong, . Physical and mechanical properties and related microscopic characteristics of high-temperature granite after water-cooling [J]. Rock and Soil Mechanics, 2021, 42(6): 1568-1578.
[2] ZHANG Chuang, REN Song, ZHANG Ping, LONG Neng-zeng, . Experimental study on Brazilian splitting of phyllite under the coupling effects of water, pore and bedding [J]. Rock and Soil Mechanics, 2021, 42(6): 1612-1624.
[3] LI Xin-wei, YAO Zhi-shu, HUANG Xian-wen, LIU Zhi-xi, ZHAO Xiang, MU Ke-han, . Investigation of deformation and failure characteristics and energy evolution of sandstone under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2021, 42(6): 1693-1704.
[4] MA Qiu-feng, LIU Zhi-he, QIN Yue-ping, TIAN Jing, WANG Shu-li, . Rock plastic-damage constitutive model based on energy dissipation [J]. Rock and Soil Mechanics, 2021, 42(5): 1210-1220.
[5] PENG Shou-jian, WANG Rui-fang, XU Jiang, GAN Qing-qing, CAI Guo-liang, . Experimental study of the effect of secondary carbonization temperature on mechanical properties and microstructure of hot-pressed coal briquette specimens [J]. Rock and Soil Mechanics, 2021, 42(5): 1221-1229.
[6] LIU Xin-rong, XU Bin, ZHOU Xiao-han, XIE Ying-kun, HE Chun-mei, HUANG Jun-hui, . Investigation on macro-meso cumulative damage mechanism of weak layer under pre-peak cyclic shear loading [J]. Rock and Soil Mechanics, 2021, 42(5): 1291-1303.
[7] LIU Jie, ZHANG Han, WANG Rui-hong, WANG Fang, HE Zhuo-wen, . Investigation of progressive damage and deterioration of sandstone under freezing-thawing cycle [J]. Rock and Soil Mechanics, 2021, 42(5): 1381-1394.
[8] ZHAO Kui, RAN Shan-hu, ZENG Peng, YANG Dao-xue, TENG Tian-ye. Effect of moisture content on characteristic stress and acoustic emission characteristics of red sandstone [J]. Rock and Soil Mechanics, 2021, 42(4): 899-908.
[9] LEI Xue-wen, DING Hao, WANG Xin-zhi, SHEN Jian-hua, MENG Qing-shan, . Experimental study of consolidation properties of calcareous silt [J]. Rock and Soil Mechanics, 2021, 42(4): 909-920.
[10] YU Li, PENG Hai-wang, LI Guo-wei, ZHANG Yu, HAN Zi-hao, ZHU Han-zheng. Experimental study on granite under high temperature-water cooling cycle [J]. Rock and Soil Mechanics, 2021, 42(4): 1025-1035.
[11] DENG Hua-feng, FANG Jing-cheng, LI Jian-lin, LI Guan-ye, QI Yu, XU Xiao-liang. Damage evolution of dynamic characteristics of sandstone under the sequential action of water-rock interaction and cyclic loading and unloading [J]. Rock and Soil Mechanics, 2021, 42(2): 343-351.
[12] ZHANG Yu-fei, LI Jian-chun, YAN Ya-tao, LI Hai-bo, . Experimental study on dynamic damage characteristics of roughness joint surface based on SHPB [J]. Rock and Soil Mechanics, 2021, 42(2): 491-500.
[13] ZHANG Yan-bo, WU Wen-rui, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, HUANG Yan-li, LIANG Jing-long, . Acoustic emission, infrared characteristics and damage evolution of granite under uniaxial compression [J]. Rock and Soil Mechanics, 2020, 41(S1): 139-146.
[14] YE Yang, ZENG Ya wu, DU Xin, SUN Han qing, CHEN Xi, . Three-dimensional discrete element simulation of spherical gravel collision damag [J]. Rock and Soil Mechanics, 2020, 41(S1): 368-378.
[15] CHENG Liang, XU Jiang, ZHOU Bin, PENG Shou-jian, YAN Fa-zhi, YANG Xiao-bo, YANG Wen-jian . The influence of different gas pressures on the propagation law of coal and gas outburst two-phase flow [J]. Rock and Soil Mechanics, 2020, 41(8): 2619-2626.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[3] WANG Shu-yun, LU Xiao-bing, ZHAO Jing, WANG Ai-lan. Post-cyclic loading undrained strength degradation characteristics of silty clay[J]. , 2009, 30(10): 2991 -2995 .
[4] RONG Guan, WANG Si-jing, WANG En-zhi, LIU Sun-gui. Study of evolutional simulation of Baihetan river valley and evaluation of engineering quality of jointed basalt P2β3[J]. , 2009, 30(10): 3013 -3019 .
[5] LIU Zhen-ping, HE Huai-jian, LI Qiang, ZHU Fa-hua. Study of the technology of 3D modeling and visualization system based on Python[J]. , 2009, 30(10): 3037 -3042 .
[6] DU Zuo-long, HUANG Mao-song, LI Zao. DCM-based on ground loss for response of group piles induced by tunneling[J]. , 2009, 30(10): 3043 -3047 .
[7] JIANG Ling-fa, CHEN Shan-xiong, YU Zhong-jiu. Scattering around a liner of arbitrary shape in saturated soil under dilatational waves[J]. , 2009, 30(10): 3063 -3070 .
[8] LIU Xiao, TANG Hui-ming, LUO Hong-ming, CHEN Sou-yi. Study of seepage flow for Chinese design codes of landslide stabilization[J]. , 2009, 30(10): 3173 -3180 .
[9] CUI Hao-dong, ZHU Yue-ming. Back analysis of seepage field of Ertan high arch dam foundation[J]. , 2009, 30(10): 3194 -3199 .
[10] ZHAO Cheng-gang,CAI Guo-qing. Principle of generalized effective stress for unsaturated soils[J]. , 2009, 30(11): 3232 -3236 .