Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (6): 1693-1704.doi: 10.16285/j.rsm.2020.1463

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Investigation of deformation and failure characteristics and energy evolution of sandstone under cyclic loading and unloading

LI Xin-wei1, 2, YAO Zhi-shu1, 2, HUANG Xian-wen1, 2, LIU Zhi-xi1, 2, ZHAO Xiang1, 2, MU Ke-han1, 2   

  1. 1. School of Civil Engineering and Architecture, Anhui University of Science & Technology, Huainan, Anhui 232001, China; 2. Research Center of Mine Underground Engineering of Ministry of Education, Anhui University of Science & Technology, Huainan, Anhui 232001, China
  • Received:2020-09-29 Revised:2021-02-08 Online:2021-06-11 Published:2021-06-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51674006, 51778004).

Abstract: The uniaxial compression and uniaxial cyclic loading and unloading tests were carried out on sandstone, and the variation laws of residual deformation, deformation modulus and lateral expansion coefficient under cyclic loading were obtained. In addition, the evolution laws of the rock input energy, elastic energy, dissipation energy, damping energy, damage energy and other energy indicators were determined. The normalized damage energy was used to characterize the damage evolution of the rock and analyze the failure modes from the macro and micro perspectives. Studies have shown that: under cyclic loading and unloading, the residual deformation exhibits a trend of deceleration-stabilization-acceleration increase. The deformation modulus of sandstone first increases and then decreases, and the lateral expansion coefficient is basically positively correlated with the number of cycles. The input energy, damage energy and the proportion of damage energy to the dissipation energy have the U-shaped distribution. Moreover, a decrease is first observed in the damping energy followed by an increase, and the proportion of damping energy to dissipation energy has the inverted U-shaped distribution. Additionally, the elastic energy generally grows slowly, and the proportion of elastic energy to input energy has the inverted U-shaped distribution. The damping energy increases with the increase of stress ratio, while the proportion of damping energy decreases. The damage of sandstone develops in three stages: deceleration-stabilization-acceleration. The compound failure mode combining shear failure and tension failure in the conjugate inclined plane is generally found in the sandstone, and the failure transforms from unstable damage to failure damage.

Key words: residual strain, deformation modulus, lateral expansion coefficient, energy index, damage evolution, failure mode

CLC Number: 

  • TU454
[1] HOU Yong-qiang, YIN Sheng-hua, YANG Shi-xing, ZHANG Min-zhe, LIU Hong-bin, . Mechanical response and energy damage evolution process of cemented backfill under impact loading [J]. Rock and Soil Mechanics, 2022, 43(S1): 145-156.
[2] ZHANG Chao, YANG Chu-qing, BAI Yun. Investigation of damage evolution and its model of rock-like brittle materials [J]. Rock and Soil Mechanics, 2021, 42(9): 2344-2354.
[3] LI Di-yuan, GAO Fei-hong, LIU Meng, MA Jin-yin. Research on failure mechanism of stratified sandstone with pre-cracked hole under combined static-dynamic loads [J]. Rock and Soil Mechanics, 2021, 42(8): 2127-2140.
[4] LIU Hui, ZHENG Jun-jie, ZHANG Rong-jun. System failure probability analysis of cohesive slope considering the spatial variability of undrained shear strength [J]. Rock and Soil Mechanics, 2021, 42(6): 1529-1539.
[5] QI Fei-fei, ZHANG Ke, XIE Jian-bin, . Fracturing mechanism of rock-like specimens with different joint densities based on DIC technology [J]. Rock and Soil Mechanics, 2021, 42(6): 1669-1680.
[6] LIU Xin-rong, XU Bin, ZHOU Xiao-han, XIE Ying-kun, HE Chun-mei, HUANG Jun-hui, . Investigation on macro-meso cumulative damage mechanism of weak layer under pre-peak cyclic shear loading [J]. Rock and Soil Mechanics, 2021, 42(5): 1291-1303.
[7] WANG Dong-ying, YIN Xiao-tao, YANG Guang-hua, . Experimental study of the clamping effect of the suspension bridge tunnel-type anchorage [J]. Rock and Soil Mechanics, 2021, 42(4): 1003-1011.
[8] SHI Feng, LU Kun-lin, YIN Zhi-kai. Determination of three-dimensional passive slip surface of rigid retaining walls in translational failure mode and calculation of earth pressures [J]. Rock and Soil Mechanics, 2021, 42(3): 735-745.
[9] WANG Li, LI Gao, CHEN Yong, TAN Jian-min, WANG Shi-mei, GUO Fei, . Field model test on failure mechanism of artificial cut-slope rainfall in Southern Jiangxi [J]. Rock and Soil Mechanics, 2021, 42(3): 846-854.
[10] DENG Hua-feng, FANG Jing-cheng, LI Jian-lin, LI Guan-ye, QI Yu, XU Xiao-liang. Damage evolution of dynamic characteristics of sandstone under the sequential action of water-rock interaction and cyclic loading and unloading [J]. Rock and Soil Mechanics, 2021, 42(2): 343-351.
[11] CUI Peng-bo, ZHU Yong-quan, LIU Yong, ZHU Zheng-guo, PAN Ying-dong, . Model test and particle flow numerical simulation of soil arch effect for unsaturated sandy soil tunnel [J]. Rock and Soil Mechanics, 2021, 42(12): 3451-3466.
[12] XU Peng-fei, DENG Hua-feng, ZHANG Heng-bin, PENG Meng, LI Guan-ye, JIANG Qiao, CHEN Xing-zhou, . Time-lag uniaxial compression failure characteristics of sandstone under different stress levels [J]. Rock and Soil Mechanics, 2021, 42(11): 3041-3050.
[13] LI Hao-ran, WANG Zi-heng, MENG Shi-rong, ZHAO Wei-gang, CHEN Feng, . Acoustic emission activity and damage evolution characteristics of marble under triaxial stress at high temperatures [J]. Rock and Soil Mechanics, 2021, 42(10): 2672-2682.
[14] ZHANG Yan-bo, WU Wen-rui, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, HUANG Yan-li, LIANG Jing-long, . Acoustic emission, infrared characteristics and damage evolution of granite under uniaxial compression [J]. Rock and Soil Mechanics, 2020, 41(S1): 139-146.
[15] LI Chao, LI Tao, JING Guo-ye, XIAO Yu-hua, . Study on the ultimate bearing capacity of surrounding soil underlying gripper of shaft boring machine [J]. Rock and Soil Mechanics, 2020, 41(S1): 227-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Ming-jian, WANG Ren, CHEN Zhong-xue, WANG Zhi-bing. Initiation process simulation of debris deposit based on particle flow code[J]. , 2010, 31(S1): 394 -397 .
[2] ZHANG Jian-xin, LIU Shuang-ju, ZHOU Jia-bin. Analysis of influence of foundation pits excavation unloading by top-down method on engineering structures[J]. , 2010, 31(S2): 218 -223 .
[3] BAI Bing, LI Chun-feng. Elastoplastic dynamic responses of close parallel metro tunnels to vibration loading[J]. , 2009, 30(1): 123 -128 .
[4] XUE Yun-liang, LI Shu-lin, LIN Feng, XU Hong-bin. Study of damage constitutive model of SFRC considering effect of damage threshold[J]. , 2009, 30(7): 1987 -1992 .
[5] REN Zhong, Sheng Qian. Study on the disciplinary structure and its evolution of rock mechanics in China[J]. , 2009, 30(S1): 293 -298 .
[6] ZHANG Jun-hui. Analysis of deformation behavior of expressway widening engineering under different foundation treatments[J]. , 2011, 32(4): 1216 -1222 .
[7] WANG Liang-qing, P.H.S.W. Kulatilake, TANG Hui-ming, LIANG Ye , WU Qiong ,. Kinematic analyses of sliding and toppling failure of double free face rock mass slopes[J]. , 2011, 32(S1): 72 -77 .
[8] LI Xu, ZHANG Li-min, AO Guo-dong. Variations of pore structure, void ratio, and water content in soil drying process[J]. , 2011, 32(S1): 100 -105 .
[9] DENG Hua-feng, LI Jian-lin, LIU Jie, ZHU Min, GUO Jing, LU Tao. Research on propagation of compression shear fracture in rocks considering fissure water pressure[J]. , 2011, 32(S1): 297 -0302 .
[10] DENG An-fu, ZHENG Bing, ZENG Xiang-yong. Numerical analysis of influence of building distance on superstructure and rock slope subgrade[J]. , 2009, 30(S2): 555 -559 .