Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (S1): 145-156.doi: 10.16285/j.rsm.2020.1175

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Mechanical response and energy damage evolution process of cemented backfill under impact loading

HOU Yong-qiang1, 2, YIN Sheng-hua1, 2, YANG Shi-xing1, 2, ZHANG Min-zhe1, 2, LIU Hong-bin1, 2   

  1. 1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. Key Laboratory of High-Efficient Mining and Safety of Metal Mines, Ministry of Education in University of Science and Technology Beijing, Beijing 100083, China
  • Received:2020-08-07 Revised:2021-03-29 Online:2022-06-30 Published:2022-07-13
  • Supported by:
    This work was supported by National Science Foundation for Excellent Young Scholars of China(51722401), the Key Program of National Natural Science Foundation of China(51734001) and the Fundamental Research Funds for the Central Universities) (FRF-TP-18-003C1).

Abstract: To study the dynamic mechanical properties and damage evolution process of the cemented tailings backfill, a separate Hopkinson rod was used to perform impact loading tests on the cemented tailings backfill under different strain rates. The experiment results show that the dynamic compressive strength and the dynamic compressive strength enhancement factor of the backfill increases exponentially with the increase of the strain rate, and the strain rate effect of the backfill with a lower cement content is more significant. The pre-peak energy consumption density, post-peak energy consumption density, strain energy per unit volume, and total energy consumption density of the backfill all show an exponential function increasing law with the average strain rate increase, and the dynamic compressive strength has an obvious positive correlation with the post-peak dissipated energy density. Under the action of impact load, the deformation and failure of the backfill mainly experienced three stages: linear elastic deformation, yield failure and post-peak fracture. The energy is stored in the sample in the form of elastic strain energy in the linear elastic deformation and yield failure stage of the backfill, and the energy is mainly released by dissipated energy in the post-peak fracture stage. Under impact loading, the energy damage evolution process of the backfill is divided into three stages: the damage stable development stage, the damage acceleration stage and the damage destruction stage.

Key words: cemented tailings backfill, impact loading, energy dissipation, mechanical properties, damage evolution

CLC Number: 

  • TD853
[1] LIU Xu-feng, ZHOU Yang-yi, . Experimental study on mechanical properties of layered hard schist under multiaxial compression [J]. Rock and Soil Mechanics, 2022, 43(8): 2213-2221.
[2] ZHONG Wen, ZHU Wen-tao, ZENG Peng, HUANG Zhen, , WANG Xiao-jun, , GUO Zhong-qun, HU Kai-jian, . Experimental study of the influence of leaching mining on mechanical properties of ionic rare earth ore floor bedrock [J]. Rock and Soil Mechanics, 2022, 43(6): 1481-1492.
[3] ZHANG Chao, YANG Chu-qing, BAI Yun. Investigation of damage evolution and its model of rock-like brittle materials [J]. Rock and Soil Mechanics, 2021, 42(9): 2344-2354.
[4] JI Sheng-ge, WANG Bao-zhong, YANG Xiu-juan, FAN Heng-hui. Experimental study of dispersive clay modified by calcium lignosulfonate [J]. Rock and Soil Mechanics, 2021, 42(9): 2405-2415.
[5] MA Cheng-hao, ZHU Chang-qi, LIU Hai-feng, CUI Xiang, WANG Tian-min, JIANG Kai-fang, YI Ming-xing, . State-of-the-art review of research on the particle shape of soil [J]. Rock and Soil Mechanics, 2021, 42(8): 2041-2058.
[6] LIU Jie, ZHANG Li-ming, CONG Yu, WANG Zai-quan, . Research on the mechanical characteristics of granite failure process under true triaxial stress path [J]. Rock and Soil Mechanics, 2021, 42(8): 2069-2077.
[7] ZHOU Heng-yu, WANG Xiu-shan, HU Xing-xing, XIONG Zhi-qi, ZHANG Xiao-yuan, . Influencing factors and mechanism analysis of strength development of geopolymer stabilized sludge [J]. Rock and Soil Mechanics, 2021, 42(8): 2089-2098.
[8] LI Xin-wei, YAO Zhi-shu, HUANG Xian-wen, LIU Zhi-xi, ZHAO Xiang, MU Ke-han, . Investigation of deformation and failure characteristics and energy evolution of sandstone under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2021, 42(6): 1693-1704.
[9] MA Qiu-feng, LIU Zhi-he, QIN Yue-ping, TIAN Jing, WANG Shu-li, . Rock plastic-damage constitutive model based on energy dissipation [J]. Rock and Soil Mechanics, 2021, 42(5): 1210-1220.
[10] PENG Shou-jian, WANG Rui-fang, XU Jiang, GAN Qing-qing, CAI Guo-liang, . Experimental study of the effect of secondary carbonization temperature on mechanical properties and microstructure of hot-pressed coal briquette specimens [J]. Rock and Soil Mechanics, 2021, 42(5): 1221-1229.
[11] WANG Ai-wen, GAO Qian-shu, PAN Yi-shan, . Experimental study of rock burst prevention mechanism of bursting liability reduction-deformation control-energy dissipation based on drillhole in coal seam [J]. Rock and Soil Mechanics, 2021, 42(5): 1230-1244.
[12] YANG Ai-wu, XU Cai-li, LANG Rui-qing, WANG Tao, . Three-dimensional mechanical properties and failure criterion of municipal solidified sludge under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2021, 42(4): 963-975.
[13] XIONG Zhong-ming, LÜ Shi-hong, LI Yun-liang, ZHAO Qi-feng, LI Jin, TAN Shu-shun, ZHANG Xiang-rong, ZHU Yu-rong, JIANG Lei, YANG Qi-fan, ZHANG Ning-bo, ZHANG Zi-dong. Research on dynamic properties and energy dissipation of loess under passive confining pressure conditions [J]. Rock and Soil Mechanics, 2021, 42(3): 775-782.
[14] DENG Hua-feng, FANG Jing-cheng, LI Jian-lin, LI Guan-ye, QI Yu, XU Xiao-liang. Damage evolution of dynamic characteristics of sandstone under the sequential action of water-rock interaction and cyclic loading and unloading [J]. Rock and Soil Mechanics, 2021, 42(2): 343-351.
[15] WANG Dong-po, HE Qi-wei, LIU Yan-hui, WEN Ji-wei, LI wei, . Research on the energy dissipation mechanism of rockfall impacts on the improved rockfall attenuator barrier [J]. Rock and Soil Mechanics, 2021, 42(12): 3356-3365.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .