Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (5): 1221-1229.doi: 10.16285/j.rsm.2020.1355

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of the effect of secondary carbonization temperature on mechanical properties and microstructure of hot-pressed coal briquette specimens

PENG Shou-jian1, 2, WANG Rui-fang1, 2, XU Jiang1, 2, GAN Qing-qing1, 2, CAI Guo-liang1, 2   

  1. 1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; 2. School of Resource s and Safety Engineering, Chongqing University, Chongqing 400044, China
  • Received:2020-09-08 Revised:2021-01-12 Online:2021-05-11 Published:2021-05-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51974041,52074047) and the Basic and Frontier Research Projects of Chongqing (cstc2018jcyjAX0626).

Abstract: In order to make the properties of the coal briquette specimens(CBS) been closer to that of the raw coal specimens(RCS), and to improve the consistency between the relevant physical simulation test and the actual engineering, uniaxial compression mechanical properties, seepage characteristics and microstructure of the secondary carbonized hot-pressed CBS are tested and analyzed by changing the temperature conditions, and effects of temperature on the mechanical properties and microstructure of the briquette are also investigated. The results show that: (1) With the increase of carbonization temperature, an increase followed by a decrease is observed in the uniaxial compressive strength of secondary carbonized hot-pressed CBS. When the carbonization temperature is 300℃, its uniaxial compressive strength is close to that of RCS. (2) Under triaxial compression, the permeability of the hot-pressed CBS firstly decreases and then increases with the increase of axial compression, and the initial permeability shows an increasing trend with the increase of carbonization temperature. (3) The characteristic peak positions of the secondary carbonized hot-pressed CBS and RCS in the FT-IR organic functional group test are basically consistent. However, the corresponding characteristic peak strength is different, and the functional group response of the infrared spectrum of the secondary carbonized hot-pressed CBS at 300℃ and 450℃ is the closest to that of the RCS. (4) Compared with the RCS, the secondary carbonized hot-pressed CBS has a more uniform pore size distribution with a small proportion of micropore and small specific surface area. Moreover, as the carbonization temperature increases, the average pore size and specific surface area of the secondary hot-pressed CBS firstly decrease and then increase. Additionally, the pore size and specific surface area are relatively the smallest when the carbonization temperature is 300℃. The research results can provide references for the optimization of forming conditions of secondary carbonized hot-pressed CBS and the study of mechanical properties of secondary carbonized briquette.

Key words: coal briquette specimen, secondary carbonization, carbonization temperature, mechanical properties, seepage characteristics

CLC Number: 

  • TD 315
[1] JI Sheng-ge, WANG Bao-zhong, YANG Xiu-juan, FAN Heng-hui. Experimental study of dispersive clay modified by calcium lignosulfonate [J]. Rock and Soil Mechanics, 2021, 42(9): 2405-2415.
[2] MA Cheng-hao, ZHU Chang-qi, LIU Hai-feng, CUI Xiang, WANG Tian-min, JIANG Kai-fang, YI Ming-xing, . State-of-the-art review of research on the particle shape of soil [J]. Rock and Soil Mechanics, 2021, 42(8): 2041-2058.
[3] LIU Jie, ZHANG Li-ming, CONG Yu, WANG Zai-quan, . Research on the mechanical characteristics of granite failure process under true triaxial stress path [J]. Rock and Soil Mechanics, 2021, 42(8): 2069-2077.
[4] ZHOU Heng-yu, WANG Xiu-shan, HU Xing-xing, XIONG Zhi-qi, ZHANG Xiao-yuan, . Influencing factors and mechanism analysis of strength development of geopolymer stabilized sludge [J]. Rock and Soil Mechanics, 2021, 42(8): 2089-2098.
[5] YANG Ai-wu, XU Cai-li, LANG Rui-qing, WANG Tao, . Three-dimensional mechanical properties and failure criterion of municipal solidified sludge under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2021, 42(4): 963-975.
[6] XIONG Zhong-ming, LÜ Shi-hong, LI Yun-liang, ZHAO Qi-feng, LI Jin, TAN Shu-shun, ZHANG Xiang-rong, ZHU Yu-rong, JIANG Lei, YANG Qi-fan, ZHANG Ning-bo, ZHANG Zi-dong. Research on dynamic properties and energy dissipation of loess under passive confining pressure conditions [J]. Rock and Soil Mechanics, 2021, 42(3): 775-782.
[7] YANG Chun-he, ZHANG Chao, LI Quan-ming, YU Yu-zhen, MA Chang-kun, DUAN Zhi-jie, . Disaster mechanism and prevention methods of large-scale high tailings dam [J]. Rock and Soil Mechanics, 2021, 42(1): 1-17.
[8] MENG Qing-bin, WANG Jie, HAN Li-jun, SUN Wen, QIAO Wei-guo, WANG Gang, . Physical and mechanical properties and constitutive model of very weakly cemented rock [J]. Rock and Soil Mechanics, 2020, 41(S1): 19-29.
[9] XI Bao-ping, WU Yang-chun, WANG Shuai, XIONG Gui-ming, ZHAO Yang-sheng, . Evolution of mechanical properties of granite under thermal shock in water with different cooling temperatures [J]. Rock and Soil Mechanics, 2020, 41(S1): 83-94.
[10] ZHAO Yi-qing, WU Chang-gui, JIN Ai-bing, SUN Hao, . Experimental study of sandstone microstructure and mechanical properties under high temperature [J]. Rock and Soil Mechanics, 2020, 41(7): 2233-2240.
[11] JIANG Chang-bao, WEI Cai, DUAN Min-ke, CHEN Yu-fei, YU Tang, LI Zheng-ke, . Hysteresis effect and damping characteristics of shale under saturated and natural state [J]. Rock and Soil Mechanics, 2020, 41(6): 1799-1808.
[12] MENG Qing-bin, QIAN Wei, HAN Li-jun, YU Li-yuan, WANG Cong-kai, ZHOU Xing. Experimental study on formation mechanism and mechanical properties of regenerated structure of very weak cemented rock mass [J]. Rock and Soil Mechanics, 2020, 41(3): 799-812.
[13] TIAN Wei, WANG Zhen, ZHANG Li, YU Chen. Mechanical properties of 3D printed rock samples subjected to high temperature treatment [J]. Rock and Soil Mechanics, 2020, 41(3): 961-969.
[14] ZHANG Shan-kai, LENG Xian-lun, SHENG Qian, . Study of water swelling and softening characteristics of expansive rock [J]. Rock and Soil Mechanics, 2020, 41(2): 561-570.
[15] YI Xue-feng, LIU Chun-kang, WANG Yu. Experimental study on the fracture evolution of cemented waste rock-tailings backfill (CWRB) of metal ore using in-situ CT scanning [J]. Rock and Soil Mechanics, 2020, 41(10): 3365-3373.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TANG Ming-ming, WANG Zhi-yin, MA Lan-ping, ZENG Zhi-hua, ZHANG Zhi-pei. Study of design parameters of oil-gas pipeline traversing loess gully[J]. , 2010, 31(4): 1314 -1318 .
[2] LIN Hang,CAO Ping,LI Jiang-teng,JIANG Xue-liang,HE Zhong-ming. Deformation stability of three-dimensional slope based on Hoek-Brown criterion[J]. , 2010, 31(11): 3656 -3660 .
[3] LI Jun-cai,JI Guang-qiang,SONG Gui-hua,ZHANG Qiong,WANG Zhi-liang,YAN Xiao-min. In-situ measurement and analysis of sparse pile-raft foundation of high-rise building[J]. , 2009, 30(4): 1018 -1022 .
[4] NIU Wen-jie,YE Wei-min,LIU Shao-gang,YU Hai-tao. Limit analysis of a soil slope considering saturated-unsaturated seepage[J]. , 2009, 30(8): 2477 -2482 .
[5] LIN Da-ming1,2,SHANG Yan-jun1,SUN Fu-jun3,SUN Yuan-chun1,2,WU Feng-bo1,2,LIU Zhi. Study of strength assessment of rock mass and application[J]. , 2011, 32(3): 837 -842 .
[6] LI Hui , YAN E-chuan , YANG Jian-guo , Lü Kun . Study of interaction of landslide mass and retaining wall under condition of reservoir water[J]. , 2012, 33(5): 1593 -1600 .
[7] WANG Ke-liang, LIU Ling, SUI Tong-bo , XU Yun-hai, HU Ting-zheng. Experiment research on anti-shear(cut)performance of dam bedrock-rubber powder modified concrete in-situ[J]. , 2011, 32(3): 753 -756 .
[8] WANG Yu ,LI Jian-lin ,DENG Hua-feng ,WANG Rui-hong . Investigation on unloading triaxial rheological mechanical properties of soft rock and its constitutive model[J]. , 2012, 33(11): 3338 -3344 .
[9] HUANG Zhi-peng , DONG Yan-jun , LIAO Nian-chun , YIN Jian-min , ZHOU Jiang-ping . Deformation monitoring and analysis of left bank high slope at Jinping I hydropower station[J]. , 2012, 33(S2): 235 -242 .
[10] YIN Hong-lei,XU Qian-jun,LI Zhong-kui. Effect of swelling deformation on stability of expansive soil slope[J]. , 2009, 30(8): 2506 -2510 .