Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (8): 2089-2098.doi: 10.16285/j.rsm.2021.0018

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Influencing factors and mechanism analysis of strength development of geopolymer stabilized sludge

ZHOU Heng-yu1, WANG Xiu-shan1, HU Xing-xing2, XIONG Zhi-qi3, ZHANG Xiao-yuan1   

  1. 1. School of Civil Engineering and Architecture, Zhejiang Sci-Tec University, Hangzhou, Zhejiang 310018, China; 2. Zhejiang Titan Design & Engineering Co., Ltd, Hangzhou, Zhejiang 310012, China; 3. China United Engineering Corporation Limited, Hangzhou, Zhejiang 310052, China
  • Received:2021-01-05 Revised:2021-04-15 Online:2021-08-11 Published:2021-08-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51578508), the Natural Science Foundation of Zhejiang Province (LQ19E080025) and the Basic Public Welfare Research Project of Zhejiang Province (LGF18E080015).

Abstract: To solve the problem of carbon emission and high energy consumption of traditional binder, the coal-bearing metakaolin (CMK) geopolymer was used to stabilize sludge. The unconfined compressive strength (UCS) test was conducted to determine the proportion of alkali activator firstly. On this basis, the effects of alkali-precursor ratio, precursor content, NaOH molarity, curing time, curing temperature and slag content on the mechanical properties of stabilized sludge were investigated. Finally, the SEM and XRD tests were conducted to analyse the microstructure of stabilized sludge. The results showed that the UCS of stabilized sludge first increased and then decreased with increasing Na2SiO3:NaOH ratio and the rational proportion of alkali activator of geopolymer was Na2SiO3:NaOH=75:25. The UCS increased as the alkali-precursor ratio, precursor content and NaOH molarity increased. As the curing time, curing temperature and slag content increased, the UCS of stabilized sludge improved more obviously. The microstructural analysis showed that no new minerals were formed in geopolymer stabilized sludge. With the increase of alkali-precursor ratio, precursor content, NaOH molarity, curing time, curing temperature and slag content, the amount of amorphous N-A-S-H and C-(A)-S-H gels increased, which made the soil structure denser through bonding and filling effects, thus increasing the strength of stabilized sludge.

Key words: coal-bearing metakaolin, geopolymer, sludge, mechanical properties, microstructure

CLC Number: 

  • TU 447
[1] JI Sheng-ge, WANG Bao-zhong, YANG Xiu-juan, FAN Heng-hui. Experimental study of dispersive clay modified by calcium lignosulfonate [J]. Rock and Soil Mechanics, 2021, 42(9): 2405-2415.
[2] GE Miao-miao, LI Ning, SHENG Dai-chao, ZHU Cai-hui, PINEDA Jubert, . Experimental investigation of microscopic deformation mechanism of unsaturated compacted loess under hydraulic coupling conditions [J]. Rock and Soil Mechanics, 2021, 42(9): 2437-2448.
[3] MA Cheng-hao, ZHU Chang-qi, LIU Hai-feng, CUI Xiang, WANG Tian-min, JIANG Kai-fang, YI Ming-xing, . State-of-the-art review of research on the particle shape of soil [J]. Rock and Soil Mechanics, 2021, 42(8): 2041-2058.
[4] LIU Jie, ZHANG Li-ming, CONG Yu, WANG Zai-quan, . Research on the mechanical characteristics of granite failure process under true triaxial stress path [J]. Rock and Soil Mechanics, 2021, 42(8): 2069-2077.
[5] PENG Shou-jian, WANG Rui-fang, XU Jiang, GAN Qing-qing, CAI Guo-liang, . Experimental study of the effect of secondary carbonization temperature on mechanical properties and microstructure of hot-pressed coal briquette specimens [J]. Rock and Soil Mechanics, 2021, 42(5): 1221-1229.
[6] YANG Ai-wu, XU Cai-li, LANG Rui-qing, WANG Tao, . Three-dimensional mechanical properties and failure criterion of municipal solidified sludge under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2021, 42(4): 963-975.
[7] WU Jun, ZHENG Xi-yao, YANG Ai-wu, LI Yan-bo. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer [J]. Rock and Soil Mechanics, 2021, 42(3): 647-655.
[8] XIONG Zhong-ming, LÜ Shi-hong, LI Yun-liang, ZHAO Qi-feng, LI Jin, TAN Shu-shun, ZHANG Xiang-rong, ZHU Yu-rong, JIANG Lei, YANG Qi-fan, ZHANG Ning-bo, ZHANG Zi-dong. Research on dynamic properties and energy dissipation of loess under passive confining pressure conditions [J]. Rock and Soil Mechanics, 2021, 42(3): 775-782.
[9] WANG Gang, ZHANG Xian-wei, LIU Xin-yu, XU Yi-qing, LU Jian-feng, . Compression characteristics and microscopic mechanism of Xiamen granite residual soil [J]. Rock and Soil Mechanics, 2021, 42(12): 3291-3300.
[10] LI Wei-yi, QIAN Jian-gu, YIN Zhen-yu, ZHOU Chuang, . Simulation of seepage erosion in gap graded sand soil using CFD-DEM [J]. Rock and Soil Mechanics, 2021, 42(11): 3191-3201.
[11] WANG Dong-xing, CHEN Zheng-guang, . Strain rate effect on mechanical properties of magnesium oxychloride cement solidified sludge [J]. Rock and Soil Mechanics, 2021, 42(10): 2634-2646.
[12] YANG Chun-he, ZHANG Chao, LI Quan-ming, YU Yu-zhen, MA Chang-kun, DUAN Zhi-jie, . Disaster mechanism and prevention methods of large-scale high tailings dam [J]. Rock and Soil Mechanics, 2021, 42(1): 1-17.
[13] WANG Dong-xing, CHEN Zheng-guang, . Mechanical properties and micro-mechanisms of magnesium oxychloride cement solidified sludge [J]. Rock and Soil Mechanics, 2021, 42(1): 77-85.
[14] MENG Qing-bin, WANG Jie, HAN Li-jun, SUN Wen, QIAO Wei-guo, WANG Gang, . Physical and mechanical properties and constitutive model of very weakly cemented rock [J]. Rock and Soil Mechanics, 2020, 41(S1): 19-29.
[15] XI Bao-ping, WU Yang-chun, WANG Shuai, XIONG Gui-ming, ZHAO Yang-sheng, . Evolution of mechanical properties of granite under thermal shock in water with different cooling temperatures [J]. Rock and Soil Mechanics, 2020, 41(S1): 83-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .