Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (3): 673-680.doi: 10.16285/j.rsm.2020.1675

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Brittleness evaluation of coral reef limestone base on stress-strain curve

LIU Hai-feng1, 2, ZHENG Kun3, ZHU Chang-qi1, MENG Qing-shan1, WU Wen-juan4   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China; 3. College of Civil Engineering, Guizhou University, Guiyang, Guizhou 550025, China; 4. Shandong Transportation Institute, Jinan, Shandong 250100, China
  • Received:2020-11-08 Revised:2021-01-26 Online:2021-03-11 Published:2021-03-15
  • Supported by:
    This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA13010201, XDA13010301), the National Natural Science Foundation of China(41877271), the Self Deployment Project of Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences(ISEE2020YB09) and Hubei Natural Science Foundation(2020CFB243).

Abstract: This project planed to investigate the brittleness index of coral reef limestone which is an important property of rock materials. For this purpose, physical property test, uniaxial and triaxial compression tests were performed on four types of reef limestone core samples (framestone, bindstone, rudstone and bioclastic limestone) which were sampled in a certain depth from a certain coral reef in South China Sea. The test results show that the physical and mechanical properties of reef limestone are strongly influenced by the fabric and diagenesis. The failure characteristics of reef limestone can be accurately described by the brittleness index which is calculated based on the relative magnitude and the absolute velocity of post peak stress dropping. The investigation also suggests that the brittleness index is sensitive to the confining pressure and decreases with the increase of confining pressure. Meanwhile, under uniaxial compression, the brittleness index of bioclastic limestone with low-porosity is similar to that of cement mortar, and higher than that of framestone and bindstone. Furthermore, with the increase of porosity, the brittleness indexes of rudstone and bioclastic limestone decrease, and the saturated uniaxial compressive strength is negatively correlated with porosity.

Key words: coral reef limestone, brittleness index, stress-strain curve, confining pressure, porosity

CLC Number: 

  • TU473
[1] DENG Shen-yuan, JIANG Qing-hui, SHANG Kai-wei, JING Xiang-yang, XIONG Feng, . Effect of high temperature on micro-structure and permeability of granite [J]. Rock and Soil Mechanics, 2021, 42(6): 1601-1611.
[2] LÜ Ya-ru, WANG Chong, HUANG Hou-xu, ZUO Dian-jun, . Study on particle structure and crushing behaviors of coral sand [J]. Rock and Soil Mechanics, 2021, 42(2): 352-360.
[3] HE Wen-hai, WANG Tong. Dynamic porosity and related dynamic response characteristic of two-dimensional saturated soil [J]. Rock and Soil Mechanics, 2020, 41(8): 2703-2711.
[4] MAO Jia-hua, YUAN Da-jun, YANG Jiang-xiao, ZHANG Bing, . A theoretical study of porosity characteristics on the excavation face of slurry shield in sand stratum [J]. Rock and Soil Mechanics, 2020, 41(7): 2283-2292.
[5] HOU Zhi-qiang, WANG Yu, LIU Dong-qiao, LI Chang-hong, LIU Hao. Experimental study of mechanical properties of marble under triaxial unloading confining pressure after fatigue loading [J]. Rock and Soil Mechanics, 2020, 41(5): 1510-1520.
[6] LIU Hai-feng, ZHU Chang-qi, WANG Ren, WANG Xin-zhi, CUI Xiang, WANG Tian-min, . Shear test on reef limestone-concrete bonding interface [J]. Rock and Soil Mechanics, 2020, 41(5): 1540-1548.
[7] WANG Gang, QIN Xiang-jie, JIANG Cheng-hao, ZHANG Zhen-yu. Simulations of temperature effects on seepage and deformation of coal microstructure in 3D CT reconstructions [J]. Rock and Soil Mechanics, 2020, 41(5): 1750-1760.
[8] LI Min, MENG De-jiao, YAO Xin-yu, . Optimization of requirement for two kinds of ash solidified materials used in oil contaminated saline soil considering temperature sensitivity [J]. Rock and Soil Mechanics, 2020, 41(4): 1203-1210.
[9] LI Zong-ze, JIANG De-yi, FAN Jin-yang, CHEN Jie, LIU Wei, WU Fei, DU Chao, KANG Yan-fei. Experimental study of triaxial interval fatigue of salt rock [J]. Rock and Soil Mechanics, 2020, 41(4): 1305-1312.
[10] LI Kang, WANG Wei, YANG Dian-sen, CHEN Wei-zhong, QI Xian-yin , TAN Cai. Application of periodic oscillation method in low permeability measurement [J]. Rock and Soil Mechanics, 2020, 41(3): 1086-1094.
[11] GAO Feng, CAO Shan-peng, XIONG Xin, ZHOU Ke-ping, ZHU Long-yin, . Brittleness evolution characteristics of cyan sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 445-452.
[12] WEI Gang, ZHANG Xin-hai, LIN Xin-bei, HUA Xin-xin, . Variations of transverse forces on nearby shield tunnel caused by foundation pits excavation [J]. Rock and Soil Mechanics, 2020, 41(2): 635-644.
[13] FU Hong-yuan, JIANG Huang-bin, QIU Xiang, JI Yun-peng, . Seepage characteristics of single-fracture silty mudstone under low stress and overlying water environment [J]. Rock and Soil Mechanics, 2020, 41(12): 3840-3850.
[14] WU Yang, CUI Jie, LI Neng, WANG Xing, WU Yi-hang, GUO Shu-yang, . Experimental study on the mechanical behavior and particle breakage characteristics of hydraulic filled coral sand on a coral reef island in the South China Sea [J]. Rock and Soil Mechanics, 2020, 41(10): 3181-3191.
[15] FAN Yun-hui, ZHU Qi-zhi, NI Tao, ZHANG Kun, ZHANG Zhen-nan, . A brittle-ductile transition constitutive model based on discrete elastic tensors [J]. Rock and Soil Mechanics, 2019, 40(S1): 181-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[5] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[6] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[7] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[8] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[9] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[10] WEI Hou-zhen, YAN Rong-tao, WEI Chang-fu, WU Er-lin, CHEN Pan, TIAN Hui-hui. Summary of researches for phase-equilibrium of natural gas hydrates in bearing sediments[J]. , 2011, 32(8): 2287 -2294 .