›› 2012, Vol. 33 ›› Issue (2): 604-610.

• Numerical Analysis • Previous Articles     Next Articles

Similar material simulation test and numerical analysis of impact damage law of roadway under interaction between coal and support

LÜ Xiang-feng1, 2, PAN Yi-shan2, TANG Ju-peng2, XIAO Xiao-chun2   

  1. 1. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; 2. School of Mechanics and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China
  • Received:2010-07-19 Online:2012-02-10 Published:2012-02-14

Abstract: Adopting similar material simulation test and numerical simulation methods, the impact damage process of coal roadway under anchor bolt, U-steel and energy absorbing support are studied. The impact failure mechanism of roadway under interaction between coal and support is received. Similar material simulation and numerical results show that the impact damage laws under different support types are consistent with each other. Under impact loads, the roof sinks significant, the floor drum obvious, and the both sides have a large internal deformation; cracks expansion and through, even the coal thrown out. According to similar material simulation test and calculation results, it is shown that for different support types, different levels of impact damage, energy absorbing support has good cushioning and energy absorption characteristics, and advantages of small deformation and good stability. The test results also indicate that the energy absorbing support is better for rockburst roadway.

Key words: coal roadway, interaction, impact failure, similar material simulation test, numerical analysis

CLC Number: 

  • TD 821
[1] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[2] WENG Yong-hong, ZHANG Lian, XU Tang-jin, HUANG Shu-ling, DING Xiu-li, . Safety evaluation on interaction of new plug structure and surrounding rock mass under high water head [J]. Rock and Soil Mechanics, 2020, 41(1): 242-252.
[3] DENG Hua-feng, ZHI Yong-yan, DUAN Ling-ling, PAN Deng, LI Jian-lin. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction [J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456.
[4] ZHU Cai-hui, CUI Chen, LAN Kai-jiang, DONG Yong-qiang. The effects of the degradation of brick-clay structure and demolition of embedded buildings on the stability of Yulin City Wall [J]. Rock and Soil Mechanics, 2019, 40(8): 3153-3166.
[5] YANG De-huan, YAN Rong-tao, WEI Chang-fu, PAN Xue-ying, ZHANG Qin, . A method for determining average intergranular stresses in saturated clays [J]. Rock and Soil Mechanics, 2019, 40(6): 2075-2084.
[6] LU Jun-long, ZHANG Yin, . Experimental study of the seismic response of the assembled multi-ribbed wall structure-subsoil system in frequency domain [J]. Rock and Soil Mechanics, 2019, 40(6): 2163-2171.
[7] SHI Li, WANG Hui-ping, SUN Hong-lei, PAN Xiao-dong, . Approximate analytical solution on vibrations of saturated ground induced by pile foundations [J]. Rock and Soil Mechanics, 2019, 40(5): 1750-1760.
[8] XIE Qiang, TIAN Da-lang, LIU Jin-hui, ZHANG Jian-hua, ZHANG Zhi-bin, . Simulation of seepage flow on soil slope and special stress-correction technique [J]. Rock and Soil Mechanics, 2019, 40(3): 879-892.
[9] WANG Yu-fei, LIU Run. Study on vertical-horizontal failure envelopes of shallow-embedded pipelines on sand [J]. Rock and Soil Mechanics, 2019, 40(3): 1129-1139.
[10] LI Ning, YANG Min, LI Guo-feng. Revisiting the application of finite element method in geotechnical engineering [J]. Rock and Soil Mechanics, 2019, 40(3): 1140-1148.
[11] ZHENG Li-ming, ZHANG Yang-yang, LI Zi-feng, MA Ping-hua, YANG Xin-jun, . Analysis of seepage changes during poroelastic consolidation process with porosity and pressure variation under low-frequency vibration [J]. Rock and Soil Mechanics, 2019, 40(3): 1158-1168.
[12] SONG Zhan-ping, CHENG Yun, YANG Teng-tian, HUO Run-ke, WANG Jun-bao, LIU Xin-rong, . Experimental study of the influence of osmotic pressure on pore structure evolution in limestone [J]. Rock and Soil Mechanics, 2019, 40(12): 4607-4619.
[13] ZHANG Ke, WANG Hai-jun, REN Ran, TANG Lei, YU Shu-yang, LIU Xin-na, GU Hao, . Fracture characteristics of sphere with 45ºdouble embedded cracks based on 3D-ILC [J]. Rock and Soil Mechanics, 2019, 40(12): 4731-4739.
[14] FENG Ling-yun, ZHU Bin, DAI Jia-lin, KONG De-qiong, . Modelling lateral pipe-soil interaction on soft clay using large displacement sequential limit analysis [J]. Rock and Soil Mechanics, 2019, 40(12): 4907-4915.
[15] YUAN Peng-bo, YANG Xuan-yu, ZHAO Tian-yu, . Deterioration characteristics of red-bed sandstone acoustic wave properties due to water and salt solution [J]. Rock and Soil Mechanics, 2019, 40(1): 227-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[3] LI Rong-tao. A coupled chemoplastic-damage constitutive model for plain concrete subjected to high temperature[J]. , 2010, 31(5): 1585 -1591 .
[4] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[5] WANG Xie-qun,ZHANG You-xiang,ZOU Wei-lie,XIONG Hai-fan. Numerical simulation for unsaturated road-embankment deformation and slope stability under rainfall infiltration[J]. , 2010, 31(11): 3640 -3644 .
[6] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[7] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[8] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[9] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .
[10] LIU Nian-ping , WANG Hong-tu , YUAN Zhi-gang , LIU Jing-cheng. Fisher discriminant analysis model of sand liquefaction and its application[J]. , 2012, 33(2): 554 -557 .