›› 2012, Vol. 33 ›› Issue (3): 753-756.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of anti-frost-heave and frost boil effect of block-stone-interlayer embankment in permafrost regions

LIU De-ren1, 2, LAI Yuan-ming1, DONG Yuan-hong1, LI Shuang-yang 1   

  1. 1. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; 2. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Received:2011-06-23 Online:2012-03-10 Published:2012-03-12

Abstract: Based on frost heave and frost boil disease mechanism analyses of embankment in permafrost regions, a new synthetical embankment with permeable geotextile, block stone interlayer and waterproof geotextile is proposed, whose anti-frost heave and boil effect is investigated by a model test. The results show that, compared with common embankment, the new synthetical anti-frost heave and boil embankment can decrease its temperature and have good cooling effect whether the air temperature is high or not. Moreover, it can decrease water content effectively; and the decrease ratio of water content is increasing with period increasing. These properties are advantageous to prevent frost heave and boil diseases from occurring and developing. What’s more, the new synthetical anti-frost heave and boil embankment is easily constructed and its cost is also low. Therefore, it has extensive application prospects.

Key words: permafrost region, embankment, frost heave, frost boil, new synthetical embankment

CLC Number: 

  • TU 445
[1] WANG Qing-zhi, FANG Jian-hong, CHAO Gang. Analysis of cooling effect of block-stone expressway embankment in warm temperature permafrost region [J]. Rock and Soil Mechanics, 2020, 41(1): 305-314.
[2] LU Liang, SHI Tong-hui, YANG Dong, . Control effect of uneven settlement of subgrade by composited method of replacement load shedding and reinforced embankment [J]. Rock and Soil Mechanics, 2019, 40(9): 3474-3482.
[3] WANG Hong-lei, SUN Zhi-zhong, LIU Yong-zhi, WU Gui-long, . The monitoring analysis of the thermal-mechanical response on embankment with thawed interlayer along Qinghai-Tibet Railway [J]. Rock and Soil Mechanics, 2019, 40(7): 2815-2824.
[4] FU Hong-yuan, LIU Jie, ZENG Ling, BIAN Han-bing, SHI Zhen-ning, . Deformation and strength tests of pre-disintegrating carbonaceous mudstone under loading and soaking condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1273-1280.
[5] ZHENG Dong, HUANG Jin-song, LI Dian-qing, . An approach for predicting embankment settlement by integrating multi-source information [J]. Rock and Soil Mechanics, 2019, 40(2): 709-719.
[6] WANG Jian-jun, CHEN Fu-quan, LI Da-yong. A simple solution of settlement for low reinforced embankments on Kerr foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 250-259.
[7] WU Jian-tao, YE Xiao, LI Guo-wei, JIANG Chao, CAO Xue-shan, . Bearing and deformation behaviors of PHC pile-reinforced soft foundation under high embankment [J]. Rock and Soil Mechanics, 2018, 39(S2): 351-358.
[8] WANG Yi-min, YAN Cen, YU Heng, LI Qi. Experimental study of soil stress characteristics of geogrid-reinforced widened embankment under static loadings [J]. , 2018, 39(S1): 311-317.
[9] CHEN Fu-quan, LAI Feng-wen, LI Da-yong. State of the art in research of geosynthetic-reinforced embankment overlying voids [J]. , 2018, 39(9): 3362-3376.
[10] ZHAO Jian-jun, YU Jian-le, XIE Ming-li, CHAI He-jun, LI Tao, BU Fan, LIN Bing,. Physical model studies on fill embankment slope deformation mechanism under rainfall condition [J]. , 2018, 39(8): 2933-2940.
[11] LIANG Cheng, XU Chao, . Study on critical height of reinforced embankments with geocell layer [J]. , 2018, 39(8): 2984-2990.
[12] LU Qing-yuan, LUO Qiang, JIANG Liang-wei, . Calculation of stress ratio of rigid pile to composite embankment [J]. , 2018, 39(7): 2473-2482.
[13] LI Han-wen, ZHANG Lu-lu, FENG Shi-jin, ZHENG Wen-Tang,. Moisture migration in a high-speed railway embankment under complex atmospheric environment [J]. , 2018, 39(7): 2574-2582.
[14] ZHANG Yu-wei, XIE Yong-li, LI You-yun, LAI Jin-xing,. A frost heave model based on space-time distribution of temperature field in cold region tunnels [J]. , 2018, 39(5): 1625-1632.
[15] NIU Ting-ting, LIU Han-long, DING Xuan-ming, CHEN Yun-min,. Piled embankment model test on vibration characteristics under high-speed train loads [J]. , 2018, 39(3): 872-880.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] SHI Xu-chao,HAN Yang. Water absorption test of soft clay after rebound under unloading[J]. , 2010, 31(3): 732 -736 .
[4] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
[5] YUAN Xi-zhong, LI Ning , ZHAO Xiu-yun, YANG Yin-tao. Analysis of sensitivity of frozen ground bearing capacity to climate change in Northeast China permafrost regions[J]. , 2010, 31(10): 3265 -3272 .
[6] BAI Bing, LI Xiao-chun, SHI Lu, TANG Li-zhong. Slope identity of elastoplastic stress-strain curve and its verification and application[J]. , 2010, 31(12): 3789 -3792 .
[7] TANG Li-min. Regularization algorithm of foundation settlement prediction model[J]. , 2010, 31(12): 3945 -3948 .
[8] LI Zhan-hai,ZHU Wan-cheng,FENG Xia-ting,LI Shao-jun,ZHOU Hui,CHEN Bing-rui. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. , 2010, 31(S2): 434 -441 .
[9] CAI Hui-teng, WEI Fu-quan, CAI Zong-wen. Study of silty clay dynamic characteristics in Chongqing downtown area[J]. , 2009, 30(S2): 224 -228 .
[10] SONG Ling , LIU Feng-yin , LI Ning . On mechanism of rotary cone penetration test[J]. , 2011, 32(S1): 787 -0792 .