Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (2): 709-719.doi: 10.16285/j.rsm.2017.1400

• Geotechnical Engineering • Previous Articles     Next Articles

An approach for predicting embankment settlement by integrating multi-source information

ZHENG Dong1, 2, 3, 4, HUANG Jin-song3, LI Dian-qing1, 2   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China; 2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China; 3. Australian Research Council Centre of Excellence for Geotechnical Science and Engineering, Newcastle University, Callaghan, NSW 2308, Australia; 4. Changjiang Institute of Survey, Planning, Design and Research, Wuhan, Hubei 430010, China
  • Received:2017-09-11 Online:2019-02-11 Published:2019-02-14
  • Supported by:
    This work was supported by the National Key R&D Program of China (2018YFC1508603, 2018YFC1508505), the National Natural Science Foundation of China (51579190, 51528901, 51779189) and the Open Fund of Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Ministry of Education (RMHSE1906).

Abstract: Accurate prediction of embankment settlement is critical for risk mitigation and cost reduction in embankment projects. Traditionally, the prediction only using data from site investigation usually deviates from the monitored settlement. In this article, it is proposed to integrate multi-source information based on Bayesian theory to predict embankment settlement. The finite element method is adopted to simulate the consolidation process of multiple soil layers, and the posterior high-dimensional distributions of soil parameters are obtained by efficient Markov Chain Monte Carlo simulation. The proposed method is validated by site data from a trial embankment constructed at Ballina, New South Wales, Australia. The results indicate that the proposed multi-sources information integration method based on Bayesian theory can effectively integrate date from site investigation and field monitoring, based on which the embankment settlement can be accurately predicted. For the trial embankment at Ballina, the accuracy of prediction is improved in terms of the overall trend as more monitored data is incorporated into Bayesian updating. The accuracy of surface prediction can be satisfied based on data from 0-116 d, while the data of 0-496 d can be used to monitor settlement for all the monitoring points. For the Ballina embankment, the prior information affects slightly on the posterior prediction, while the measurement error barely affects the prediction.

Key words: embankment, information integration, consolidation, prediction, Bayesian theory

CLC Number: 

  • U 416
[1] QIN Ai-fang, HU Hong-liang. Swelling characteristics of Gaomiaozi Ca-bentonite saturated in alkaline solution and prediction [J]. Rock and Soil Mechanics, 2020, 41(S1): 123-131.
[2] GUO Jian, CHEN Jian, HU Yang. Time series prediction for deformation of the metro foundation pit based on wavelet intelligence model [J]. Rock and Soil Mechanics, 2020, 41(S1): 299-304.
[3] BAO Ning, WEI Jing, CHEN Jian-feng. Three dimensional discrete element analysis of soil arching in piled embankment [J]. Rock and Soil Mechanics, 2020, 41(S1): 347-354.
[4] ZHUANG Xin-shan, ZHAO Han-wen, WANG Jun-xiang, HUANG Yong-jie, HU Zhi . Quantitative research on morphological characteristics of hysteretic curves of remolded weak expansive soil under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(6): 1845-1854.
[5] GUO Xu-wei, YANG Xiao-qin, CHAI Shuang-wu. Optimization of the segmented Knothe function and its dynamic parameter calculation [J]. Rock and Soil Mechanics, 2020, 41(6): 2091-2097.
[6] ZHANG Zhen, ZHANG Zhao, YE Guan-bao, WANG Meng, XIAO Yan, CHENG Yi, . Progressive failure mechanism of stiffened deep mixed column-supported embankment [J]. Rock and Soil Mechanics, 2020, 41(6): 2122-2131.
[7] SUN De-an, XUE Yao, WANG Lei, . Analysis of one-dimensional thermal consolidation of saturated soil considering heat conduction of semi-permeable drainage boundary under varying loading [J]. Rock and Soil Mechanics, 2020, 41(5): 1465-1473.
[8] LI Hong-po, MEI Guo-xiong, XIAO Tao, CHEN Zheng. Study of soil consolidation by vertical drains with overlapping smear zones [J]. Rock and Soil Mechanics, 2020, 41(5): 1560-1566.
[9] JIANG Liu-hui, LI Chuan-xun, YANG Yi-qing, ZHANG Rui. Approximate analytical solutions for one-dimensional nonlinear consolidation of double-layered soil under time-dependent loading [J]. Rock and Soil Mechanics, 2020, 41(5): 1583-1590.
[10] CHEN Qiong, CUI De-shan, WANG Jing-e, LIU Qing-bing. An experimental study of creep characteristics of sliding zone soil of Huangtupo landslide under different consolidation stresses [J]. Rock and Soil Mechanics, 2020, 41(5): 1635-1642.
[11] WU Xin-lin, ZHANG Xiao-ping, LIU Quan-sheng, LI Wei-wei, HUANG Ji-min. Prediction and classification of rock mass boreability in TBM tunnel [J]. Rock and Soil Mechanics, 2020, 41(5): 1721-1729.
[12] SHI Xu-chao, SUN Yun-de. Analysis of the evolution of excess pore water pressure in soft soil under linear unloading [J]. Rock and Soil Mechanics, 2020, 41(4): 1333-1338.
[13] REN Yu-xiao, YAN Yue, FU Deng-feng. Study of axial resistance of subsea pipe on shallow foundation [J]. Rock and Soil Mechanics, 2020, 41(4): 1404-1411.
[14] LANG Rui-qing, YANG Ai-wu, YAN Shu-wang, . Analysis of consolidation properties of rigid pile composite foundation based on modified equal strain assumption [J]. Rock and Soil Mechanics, 2020, 41(3): 813-822.
[15] YANG Gao-sheng, BAI Bing, YAO Xiao-liang, . Study of thawing and consolidation law of ice-rich embankment [J]. Rock and Soil Mechanics, 2020, 41(3): 1010-1018.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!