Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (6): 2122-2131.doi: 10.16285/j.rsm.2019.1057

• Numerical Analysis • Previous Articles     Next Articles

Progressive failure mechanism of stiffened deep mixed column-supported embankment

ZHANG Zhen1, 2, ZHANG Zhao1, 2, YE Guan-bao1, 2, WANG Meng1, 2, XIAO Yan1, 2, CHENG Yi3   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 3. Hangzhou Metropolitan Expressway Co., Ltd., Hangzhou, Zhejiang 310024, China
  • Received:2019-06-17 Revised:2019-11-21 Online:2020-06-11 Published:2020-08-02
  • Contact: 叶观宝,男,1964年生,博士,教授,博士生导师,主要从事软土地基处理技术及理论研究。E-mail: ygb1030@126.com E-mail:dyzhangzhen@126.com
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51508408, 41772281), the Fundamental Research Funds for the Central Universities(22120180106) and the Research Program of Zhejiang Communications Investment Group Co., Ltd.(201813).

Abstract: Stiffened deep mixed (SDM) column is a new ground improvement method for soft soil foundations, and has been successfully applied in ground improvement projects in roadways and railways recently. However, due to inadequate understanding of the instability mechanism of the embankment supported by SDM column, there is no mature theory to guide the design. In this paper, strain-softening model, which can reflect the post-failure behavior of column materials, was used to model the scale-down 1g model test of stability of SDM column-supported embankment. The sequence and modes of SDM column failure were investigated through examining the developments of plastic zone and force changes in SDM columns in the failure process. The results showed that the columns did not fail simultaneously in the process of embankment failure. The columns near the center of embankment failed by compression at first, followed by the sequence bending failures of the columns under embankment slope from the toe to the shoulder. The slip surface did not completely pass through the failure positons of the columns due to the existence of columns. Accordingly, the failure mechanism of SDM column-supported embankment was interpreted. The semi-rigid column method based on residual strength in the currently-used code yielded close factor of safety to the model test, but its feasibility still needs a further study.

Key words: stiffened deep mixed column, embankment, strain-softening, progressive failure, numerical simulation

CLC Number: 

  • TU 473
[1] CHEN Meng, CUI Xiu-wen, YAN Xin, WANG Hao, WANG Er-lei, . Prediction model for compressive strength of rock-steel fiber reinforced concrete composite layer [J]. Rock and Soil Mechanics, 2021, 42(3): 638-646.
[2] SHI Feng, LU Kun-lin, YIN Zhi-kai. Determination of three-dimensional passive slip surface of rigid retaining walls in translational failure mode and calculation of earth pressures [J]. Rock and Soil Mechanics, 2021, 42(3): 735-745.
[3] JIN Ai-bing, CHEN Shuai-jun, ZHAO An-yu, SUN Hao, ZHANG Yu-shuai, . Numerical simulation of open-pit mine slope based on unmanned aerial vehicle photogrammetry [J]. Rock and Soil Mechanics, 2021, 42(1): 255-264.
[4] LI Jun, ZHAI Wen-bao, CHEN Zhao-wei, LIU Gong-hui, ZHOU Ying-cao, . Research on random propagation method of hydraulic fracture based on zero-thickness cohesive element [J]. Rock and Soil Mechanics, 2021, 42(1): 265-279.
[5] BAO Ning, WEI Jing, CHEN Jian-feng. Three dimensional discrete element analysis of soil arching in piled embankment [J]. Rock and Soil Mechanics, 2020, 41(S1): 347-354.
[6] MENG Min-qiang, WANG Lei, JIANG Xiang, WANG Cheng-gui, LIU Han-long, XIAO Yang, . Single-particle crushing test and numerical simulation of coarse grained soil based on size effect [J]. Rock and Soil Mechanics, 2020, 41(9): 2953-2962.
[7] CHEN Sheng-yuan, YE Hua-yang, ZHANG Wei-feng, WEI Wei, . Settlement analysis of flexible pile composite foundation under embankment load [J]. Rock and Soil Mechanics, 2020, 41(9): 3077-3086.
[8] ZHUANG Yan, LI Shao-bang, CUI Xiao-yan, DONG Xiao-qiang, WANG Kang-yu, . Investigation on dynamic response of subgrade and soil arching effect in piled embankment under high-speed railway loading [J]. Rock and Soil Mechanics, 2020, 41(9): 3119-3130.
[9] YUE Jian-yong. In situ measurement and numerical simulation for the environmental vibration induced by urban subway transit [J]. Rock and Soil Mechanics, 2020, 41(8): 2756-2764.
[10] DENG Wei-ting, DING Xuan-ming, PENG Yu, . A study of vertical bearing capacity of expansive concrete pile in coral sand foundation [J]. Rock and Soil Mechanics, 2020, 41(8): 2814-2820.
[11] MAO Hao-yu, XU Nu-wen, LI Biao, FAN Yi-lin, WU Jia-yao, MENG Guo-tao, . Stability analysis of an underground powerhouse on the left bank of the Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. Rock and Soil Mechanics, 2020, 41(7): 2470-2484.
[12] SHI Lin-ken, ZHOU Hui, SONG Ming, LU Jing-jing, ZHANG Chuan-qing, LU Xin-jing, . Physical experimental study on excavation disturbance of TBM in deep composite strata [J]. Rock and Soil Mechanics, 2020, 41(6): 1933-1943.
[13] SU Jie, ZHOU Zheng-hua, LI Xiao-jun, DONG Qing, LI Yu-ping, CHEN Liu. Discussion on determination of shear wave arrival time based on the polarization effect in downhole method [J]. Rock and Soil Mechanics, 2020, 41(4): 1420-1428.
[14] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A strain-softening model of rock based on Hoek-Brown criterion [J]. Rock and Soil Mechanics, 2020, 41(3): 939-951.
[15] YANG Gao-sheng, BAI Bing, YAO Xiao-liang, . Study of thawing and consolidation law of ice-rich embankment [J]. Rock and Soil Mechanics, 2020, 41(3): 1010-1018.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[2] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[3] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[4] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[5] YANG Kun, ZHOU Chuang-bing WANG Tong-xu. Risk analysis of dam slope under external random multi-loadings[J]. , 2009, 30(10): 3057 -3062 .
[6] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[7] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .
[8] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .
[9] CUI Hao-dong, ZHU Yue-ming. Back analysis of seepage field of Ertan high arch dam foundation[J]. , 2009, 30(10): 3194 -3199 .
[10] ZHAO Cheng-gang,CAI Guo-qing. Principle of generalized effective stress for unsaturated soils[J]. , 2009, 30(11): 3232 -3236 .