Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (8): 2814-2820.doi: 10.16285/j.rsm.2019.1594

• Numerical Analysis • Previous Articles     Next Articles

A study of vertical bearing capacity of expansive concrete pile in coral sand foundation

DENG Wei-ting1, DING Xuan-ming1, 2, PENG Yu1   

  1. 1. College of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing University, Chongqing 400045, China
  • Received:2019-09-16 Revised:2020-01-10 Online:2020-08-14 Published:2020-10-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51878103,41831282).

Abstract: To investigate the vertical bearing characteristics of expansive concrete piles embedded in coral sand foundation, the vertical static load test of single model pile was carried out in laboratory. The load-settlement curve, axial force and frictional resistance of single expansive concrete pile were analyzed, and compared with the numerical results from PLAXIS 3D software simulation. The effect of the linear expansion rates was discussed. The results show that the load-displacement curves of expansive concrete piles in coral sand show a slow change. During the loading process, the load is mainly borne by the side friction resistance of the pile. The axial force decreases with the increase of the depth, and the side friction resistance of the pile first increases with the depth and then gradually decreases, and gradually plays a role as the load increases. With the increase of expansive agent dosage, the linear expansion of pile shaft increases gradually and the pile-soil interaction becomes more obvious. Adding 25% HCSA expansive agent can increase the ultimate bearing capacity by nearly 20% and the ultimate value of pile side friction by 56%. Increasing the linear expansion rate of the pile can effectively increase the ultimate bearing capacity and side friction resistance of the pile. This study provides a reference for the pile foundation projects in calcareous sand foundation.

Key words: coral sand, expansive concrete pile, model test, bearing characteristic, numerical simulation

CLC Number: 

  • TU 473
[1] CHEN Meng, CUI Xiu-wen, YAN Xin, WANG Hao, WANG Er-lei, . Prediction model for compressive strength of rock-steel fiber reinforced concrete composite layer [J]. Rock and Soil Mechanics, 2021, 42(3): 638-646.
[2] SHI Feng, LU Kun-lin, YIN Zhi-kai. Determination of three-dimensional passive slip surface of rigid retaining walls in translational failure mode and calculation of earth pressures [J]. Rock and Soil Mechanics, 2021, 42(3): 735-745.
[3] ZHANG Ji-meng, ZHANG Chen-rong, ZHANG Kai, . Model tests of large-diameter single pile under horizontal cyclic loading in sand [J]. Rock and Soil Mechanics, 2021, 42(3): 783-789.
[4] ZHENG Jun-jie, SHAO An-di, XIE Ming-xing, JING Dan, . Experimental study on retaining wall with EPS cushion under different backfill widths [J]. Rock and Soil Mechanics, 2021, 42(2): 324-332.
[5] LÜ Ya-ru, WANG Chong, HUANG Hou-xu, ZUO Dian-jun, . Study on particle structure and crushing behaviors of coral sand [J]. Rock and Soil Mechanics, 2021, 42(2): 352-360.
[6] WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, GAO Lu-chao, XU Yi-fei, . Experimental study on lateral bearing behavior of post-grouted piles in calcareous sand [J]. Rock and Soil Mechanics, 2021, 42(2): 411-418.
[7] XIAO Jie-fu, LI Yun-an, HU Yong, ZHANG Shen, CAI Jun-ming, . Model tests on deformation characteristics of ancient bank landslide under water level fluctuation and rainfall [J]. Rock and Soil Mechanics, 2021, 42(2): 471-480.
[8] LIU Chun-lin, TANG Meng-xiong, HU He-song, YUE Yun-peng, HOU Zhen-kun, CHEN Hang, . An experimental study of vertical bearing capacity of DPC piles considering sediment effect at pile bottom [J]. Rock and Soil Mechanics, 2021, 42(1): 177-185.
[9] LI Jian-dong, WANG Xu, ZHANG Yan-jie, JIANG Dai-jun, LIU De-ren, LI Sheng. Study of thermal moisture migration of unsaturated loess with water vapor [J]. Rock and Soil Mechanics, 2021, 42(1): 186-192.
[10] JIN Ai-bing, CHEN Shuai-jun, ZHAO An-yu, SUN Hao, ZHANG Yu-shuai, . Numerical simulation of open-pit mine slope based on unmanned aerial vehicle photogrammetry [J]. Rock and Soil Mechanics, 2021, 42(1): 255-264.
[11] LI Jun, ZHAI Wen-bao, CHEN Zhao-wei, LIU Gong-hui, ZHOU Ying-cao, . Research on random propagation method of hydraulic fracture based on zero-thickness cohesive element [J]. Rock and Soil Mechanics, 2021, 42(1): 265-279.
[12] LIU Run, CAO Tian-ming, CHEN Guang-si, ZHANG Hai-yang, LI Cheng-feng. Experimental study of the effect of spudcan penetration and extraction on bearing capacity of an adjacent spudcan [J]. Rock and Soil Mechanics, 2020, 41(9): 2943-2952.
[13] MENG Min-qiang, WANG Lei, JIANG Xiang, WANG Cheng-gui, LIU Han-long, XIAO Yang, . Single-particle crushing test and numerical simulation of coarse grained soil based on size effect [J]. Rock and Soil Mechanics, 2020, 41(9): 2953-2962.
[14] ZENG Chao-feng, XUE Xiu-li, SONG Wei-wei, LI Miao-kun, BAI Ning. Mechanism of foundation pit deformation caused by dewatering before soil excavation: an experimental study [J]. Rock and Soil Mechanics, 2020, 41(9): 2963-2972.
[15] HU Wei, MENG Jian-wei, YAO Chen, LEI Yong, . A method for calculating vertical pullout ultimate bearing capacity of shallow circular anchor plate [J]. Rock and Soil Mechanics, 2020, 41(9): 3049-3055.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[2] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[3] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[4] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[5] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .
[6] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .
[7] CUI Hao-dong, ZHU Yue-ming. Back analysis of seepage field of Ertan high arch dam foundation[J]. , 2009, 30(10): 3194 -3199 .
[8] JIA Yu-feng,CHI Shi-chun,LIN Gao. Constitutive model for coarse granular aggregates incorporating particle breakage[J]. , 2009, 30(11): 3261 -3266 .
[9] NI Xiao-hui,ZHU Zhen-de,ZHAO Jie,LI Dao-wei,FENG Xia-ting. Meso-damage mechanical digitalization test of complete process of rock failure[J]. , 2009, 30(11): 3283 -3290 .
[10] ZHOU Huo-yao,SHI Jian-yong. Test research on soil compacting effect of full scale jacked-in pile in saturated soft clay[J]. , 2009, 30(11): 3291 -3296 .