Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (2): 471-480.doi: 10.16285/j.rsm.2020.0688

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Model tests on deformation characteristics of ancient bank landslide under water level fluctuation and rainfall

XIAO Jie-fu1, LI Yun-an1, HU Yong1, 2, ZHANG Shen1, CAI Jun-ming1   

  1. 1. Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China; 2. Department of Civil Engineering, Wenhua College, Wuhan, Hubei 430074, China
  • Received:2020-05-25 Revised:2020-11-13 Online:2021-02-10 Published:2021-02-09
  • Supported by:
    This work was supported by the Key R & D projects of Ministry of Science and Technology of the People's Republic of China (2018YFC0809402), the National Key R & D Project (2017YFC1501301) and the National Program on Key Basic Research Project of China (973 Program) (2011CB710602).

Abstract: The revival of ancient bank landslide is a serious geological hazard in reservoir operation. In order to study the deformation characteristics and instability mechanism of ancient bank landslide, a large-scale physical test model was designed based on Outang landslide which is a typical multi-phase ancient bank landslide. By simulating the fluctuation of reservoir water, rainfall and their combination, the curves of pore water pressure and earth pressure with time and digital image data of landslide evolution were obtained. Results indicate that the three-phase sliding masses that compose the landslides have different deformation characteristics under the reservoir water level fluctuation and rainfall. The deformation due to the fluctuation of reservoir water is mainly concentrated in the first phase sliding mass. The rapid rise of the water level has no obvious effect on the first phase sliding mass. But the rapid decrease of water level induces a local retrogressive sliding at the toe of first phase sliding mass. Heavy rainfall causes a local retrogressive sliding at the toe of the first phase sliding mass, and the stability of the second and third phase landslides decrease obviously. The failure mode under the rapid decline of water level and heavy rainfall is local retrogressive sliding at the toe of the first phase sliding mass or/and sliding of the third phase sliding mass. The experimental phenomena coincide with the deformation characteristics and the developing tendency of actual reservoir landslide. This study provides the deformation characteristics and instability mechanism of the ancient landslide in reservoir bank under the condition of reservoir water level fluctuation and rainfall, which is helpful for the research and prevention of similar landslides.

Key words: ancient bank landslide, physical model test, water level fluctuation, rainfall, deformation evolution

CLC Number: 

  • P 642
[1] WANG Li, LI Gao, CHEN Yong, TAN Jian-min, WANG Shi-mei, GUO Fei, . Field model test on failure mechanism of artificial cut-slope rainfall in Southern Jiangxi [J]. Rock and Soil Mechanics, 2021, 42(3): 846-854.
[2] ZHAO Jiu-bin, LIU Yuan-xue, HE Shao-qi, YANG Jun-tang, BAI Zhun, . Mathematical statistical model of horizontal displacement and rainfall of step deformation landslide in Three Gorges reservoir area [J]. Rock and Soil Mechanics, 2020, 41(S1): 305-311.
[3] LUO Yi, ZHANG Jia-ming, ZHOU Zhi, CHIKHOTKIN Victor, MI Min, SHEN Jun, . Evolution law of critical moisture content of soil cracking under rainfall-evaporation conditions [J]. Rock and Soil Mechanics, 2020, 41(8): 2592-2600.
[4] PAN Yong-liang, JIAN Wen-xing, LI Lin-jun, LIN Yu-qiu, TIAN Peng-fei. A study on the rainfall infiltration of granite residual soil slope with an improved Green-Ampt model [J]. Rock and Soil Mechanics, 2020, 41(8): 2685-2692.
[5] CHENG Yong-hui, HU Sheng-gang, WANG Han-wu, ZHANG Cheng. Study on depth effect of pressuremeter feature parameters in deep buried sand [J]. Rock and Soil Mechanics, 2020, 41(6): 1881-1886.
[6] ZHANG Ming-li, WEN Zhi, DONG Jian-hua, WANG De-kai, YUE Guo-dong, WANG Bin, GAO Qiang. Response of hydrothermal activity in different types of soil at ground surface to rainfall in permafrost region [J]. Rock and Soil Mechanics, 2020, 41(5): 1549-1559.
[7] XUE Yang, WU Yi-ping, MIAO Fa-sheng, LI Lin-wei, LIAO Kang, ZHANG Long-fei. Seepage and deformation analysis of Baishuihe landslide considering spatial variability of saturated hydraulic conductivity under reservoir water level fluctuation [J]. Rock and Soil Mechanics, 2020, 41(5): 1709-1720.
[8] JIAN Wen-bin, HUANG Cong-hui, LUO Yang-hua, NIE Wen. Experimental study on wetting front migration induced by rainfall infiltration in unsaturated eluvial and residual soil [J]. Rock and Soil Mechanics, 2020, 41(4): 1123-1133.
[9] HUANG Xiao-hu, YI Wu, HUANG Hai-feng, DENG Yong-huang. Study and application of the relationship between preferential flow penetration and slope deformation [J]. Rock and Soil Mechanics, 2020, 41(4): 1396-1403.
[10] SHI Zhen-ning, QI Shuang-xing, FU Hong-yuan, ZENG Ling, HE Zhong-ming, FANG Rui-min, . A study of water content distribution and shallow stability of earth slopes subject to rainfall infiltration [J]. Rock and Soil Mechanics, 2020, 41(3): 980-988.
[11] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[12] ZHU Yuan-jia, HE Na, ZHONG Wei, KONG Ji-ming, . Physical simulation study of deformation and failure accumulation layer slope caused by intermittent rainfall [J]. Rock and Soil Mechanics, 2020, 41(12): 4035-4044.
[13] NIAN Geng-qian, CHEN Zhong-hui, ZHANG Ling-fan, BAO Min, ZHOU Zi-han. Treatment of two boundary conditions for rainfall infiltration in slope and its application [J]. Rock and Soil Mechanics, 2020, 41(12): 4105-4115.
[14] CHEN Da, XU Qiang, ZHENG Guang, CAI Guo-jun, PENG Shuang-qi, WANG Zhuo, HE Pan. Study on deformation evolution of wedge landslide in complex layered soft rock based on centrifugal model test [J]. Rock and Soil Mechanics, 2020, 41(10): 3374-3384.
[15] LIU Li, WU Yang, CHEN Li-hong, LIU Jian-kun, . Accuracy analysis of wetting front advancing method based on numerical simulation [J]. Rock and Soil Mechanics, 2019, 40(S1): 341-349.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[3] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[4] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[5] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[6] LU Zheng, YAO Hai-lin, LUO Xing-wen, HU Meng-ling. 3D dynamic responses of layered ground under vehicle loads[J]. , 2009, 30(10): 2965 -2970 .
[7] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
[8] CHU Xi-hua, XU Yuan-jie. Studies on transformation from M-C criterion to Drucker-Prager criterions based on distortion energy density[J]. , 2009, 30(10): 2985 -2990 .
[9] LI Lei, ZHU Wei, LIN Cheng, T. OHKI. Study of wet and dry properties of solidified sludge[J]. , 2009, 30(10): 3001 -3004 .
[10] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .