Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (4): 1123-1133.doi: 10.16285/j.rsm.2019.0491

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on wetting front migration induced by rainfall infiltration in unsaturated eluvial and residual soil

JIAN Wen-bin1, 2, HUANG Cong-hui1, LUO Yang-hua1, NIE Wen3   

  1. 1. Department of Geotechnical and Geological Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; 2. Engineering Research Center of Geological Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; 3. Quanzhou Institute of Equipment Manufacturing, Haixi Institute, Chinese Academy of Sciences, Quanzhou, Fujian 362200, China
  • Received:2019-03-11 Revised:2019-06-20 Online:2020-04-11 Published:2020-07-01
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41861134011).

Abstract: Rain infiltration through the soil is the critical factor in the frequent landslides on the coast of China. By considering the geological disaster points of Dehua County, Quanzhou City, Fujian Province as the main research object, the permeability characteristics of slope soil and granite residual soil are concerned in these typical geological disaster points. The one-dimensional soil column infiltration test was carried out using the soil infiltration device developed by simulating rain intensities of 15, 30 and 60 mm/h, respectively, with the rainfall conditions of duration (180 min) and amount (90 mm). The response law of moisture content, wetting front and infiltration rate of each soil column with time under different working conditions was investigated. The main results are presented in detail. The soil wetness spreads deeper and faster as the permeability coefficient of soil and the rainfall intensity become greater. The soil moisture content responds to rainfall from shallow to deep part during the process of rainfall infiltration. Meanwhile, the influence of different rain intensities on water content is mainly reflected in the first response time and saturation time. The high intensity of rain leads to short response time and a quick saturation speed. A function is proposed for different rainfall intensities, which can characterise the wetting front infiltration laws of the Maping landslide and the Bengtuling landslide in Dehua County. The results are of great significance for the early warning of landslide hazards.

Key words: rainfall, slopewash and residual soil, wetting front, response time, landslide

CLC Number: 

  • TU 411
[1] XIE Ji-ren, QIAO Shi-fan, YU Peng-kun, UCHIMURA Taro, WANG Gong-hui, JIANG Yao, FANG Zheng, TIAN Jing-li. Surface tilt deformation of soil landslides based on laboratory and field tests [J]. Rock and Soil Mechanics, 2021, 42(3): 681-690.
[2] WANG Li, LI Gao, CHEN Yong, TAN Jian-min, WANG Shi-mei, GUO Fei, . Field model test on failure mechanism of artificial cut-slope rainfall in Southern Jiangxi [J]. Rock and Soil Mechanics, 2021, 42(3): 846-854.
[3] REN San-shao, ZHANG Yong-shuang, XU Neng-xiong, WU Rui-an, LIU Xiao-yi. Mobilized strength of sliding zone soils with gravels in reactivated landslides [J]. Rock and Soil Mechanics, 2021, 42(3): 863-873.
[4] XIAO Jie-fu, LI Yun-an, HU Yong, ZHANG Shen, CAI Jun-ming, . Model tests on deformation characteristics of ancient bank landslide under water level fluctuation and rainfall [J]. Rock and Soil Mechanics, 2021, 42(2): 471-480.
[5] ZHANG Kai, ZHANG Ke, BAO Rui, LIU Xiang-hua, QI Fei-fei, . Intelligent prediction of landslide displacements based on optimized empirical mode decomposition and K-Mean clustering [J]. Rock and Soil Mechanics, 2021, 42(1): 211-223.
[6] ZHAO Jiu-bin, LIU Yuan-xue, HE Shao-qi, YANG Jun-tang, BAI Zhun, . Mathematical statistical model of horizontal displacement and rainfall of step deformation landslide in Three Gorges reservoir area [J]. Rock and Soil Mechanics, 2020, 41(S1): 305-311.
[7] YAN Qi-wei, LI Xin-po, HE Si-ming, LUO Yu, TIAN Hong-ling, WU Yong, . Experimental study of self-healing of slip zone soil in typical red bed landslide [J]. Rock and Soil Mechanics, 2020, 41(9): 3041-3048.
[8] LUO Yi, ZHANG Jia-ming, ZHOU Zhi, CHIKHOTKIN Victor, MI Min, SHEN Jun, . Evolution law of critical moisture content of soil cracking under rainfall-evaporation conditions [J]. Rock and Soil Mechanics, 2020, 41(8): 2592-2600.
[9] PAN Yong-liang, JIAN Wen-xing, LI Lin-jun, LIN Yu-qiu, TIAN Peng-fei. A study on the rainfall infiltration of granite residual soil slope with an improved Green-Ampt model [J]. Rock and Soil Mechanics, 2020, 41(8): 2685-2692.
[10] HE Shao-qi, LIU Yuan-xue, YANG Jun-tang, BAI Zhun, ZHAO Jiu-bin, . A component response mode and multi-factor model for accumulation landslide displacement induced by reservoir [J]. Rock and Soil Mechanics, 2020, 41(8): 2773-2784.
[11] DU Wen-jie, SHENG Qian, FU Xiao-dong, TANG Hua, CHEN He, DU Yu-xiang, ZHOU Yong-qiang. Dynamic stability analysis and failure mechanism of Yanyang village landslide under earthquake [J]. Rock and Soil Mechanics, 2020, 41(7): 2461-2469.
[12] ZHANG Ming-li, WEN Zhi, DONG Jian-hua, WANG De-kai, YUE Guo-dong, WANG Bin, GAO Qiang. Response of hydrothermal activity in different types of soil at ground surface to rainfall in permafrost region [J]. Rock and Soil Mechanics, 2020, 41(5): 1549-1559.
[13] HAN Dong-dong, MEN Yu-ming, HU Zhao-jiang. Experimental study of anti-sliding mechanism and force of lattice anchor in soil landslide [J]. Rock and Soil Mechanics, 2020, 41(4): 1189-1194.
[14] HUANG Xiao-hu, YI Wu, HUANG Hai-feng, DENG Yong-huang. Study and application of the relationship between preferential flow penetration and slope deformation [J]. Rock and Soil Mechanics, 2020, 41(4): 1396-1403.
[15] TANG Ming-gao, LI Song-lin, XU Qiang, GONG Zheng-feng, ZHU Quan, WEI Yong. Study of deformation characteristics of reservoir landslide based on centrifugal model test [J]. Rock and Soil Mechanics, 2020, 41(3): 755-764.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Han,HUANG Bin,RAO Xi-bao,HE Xiao-min,XU Yan-yong. Consolidation and drainage effect of drilling and sand replacement samples in consolidated drained triaxial tests[J]. , 2009, 30(11): 3242 -3248 .
[2] WANG Wei,WANG Shui-lin,TANG Hua,ZHOU Ping-gen. Application of 3-D GIS to monitoring and forecast system of landslide hazard[J]. , 2009, 30(11): 3379 -3385 .
[3] ZHOU Qi,LIU Han-long,GU Chang-cun. Field tests on groundwater level and yield of water under vacuum preloading[J]. , 2009, 30(11): 3435 -3440 .
[4] ZHAO Ming-hua, ZHANG Ling, CAO Wen-gui, MA Bin-hui. Deformation analysis of geocell reinforcement based on theory for beam on elastic foundation[J]. , 2009, 30(12): 3695 -3699 .
[5] LI Wei-shu, HUANG Zhi-peng, ZHOU Huo-ming, JING Feng. Optimization of bearing capacity of rock foundation based on study of relativity of P-R[J]. , 2009, 30(12): 3700 -3704 .
[6] GU Qiang-kang, LI Ning, HUANG Wen-guang. Research on differential settlement index of high-filled subgrade after construction in mountainous airport[J]. , 2009, 30(12): 3865 -3870 .
[7] MIAO Qiang-qiang,ZHANG Lei,CHEN Zheng-han,HUANG Xue-feng. Experimental study of generalized SWCC of unsaturated sand and containing clay[J]. , 2010, 31(1): 102 -106 .
[8] JIANG Ming-jing,WANG Fu-zhou,ZHU He-hua. Shear band formation in ideal dense sand in direct shear test by discrete element analysis[J]. , 2010, 31(1): 253 -257 .
[9] ZHANG Min, NG Charles W W. Groundwater control technique in centrifuge tests[J]. , 2010, 31(2): 355 -360 .
[10] ZHAO Xu-feng, SUN Jun. Testing study of rheological characteristics of weathered granite in undersea tunnel project[J]. , 2010, 31(2): 403 -406 .