›› 2012, Vol. 33 ›› Issue (3): 827-834.

• Geotechnical Engineering • Previous Articles     Next Articles

Research on large deformation mechanism and control method of deep soft roadway in Zhuji coal mine

HUANG Xing1, LIU Quan-sheng1, 2, QIAO Zheng2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao, Shandong 266510, China
  • Received:2010-10-26 Online:2012-03-10 Published:2012-03-12

Abstract: In order to explore the large deformation mechanism and control method of deep soft roadway, analysis is made based on the engineering background of level -885 m east wing rail roadway of Zhuji Coal Mine, Huainan mining area. This roadway is a typical deep soft rock of high geostress, of which the surrounding rock becomes extremely unstable, showing strong nonlinear deformation characteristics and high deformation rate after excavation. Rating of the large deformation is firstly made. The surrounding rock stress field and displacement field are analyzed by Hoek-Brown elastoplastic constitutive model. Considering the strength of surrounding rock, the influences of disturbance, the cross-section shape, the roadway deformation mechanism are revealed finally. Optimized supporting method is proposed which is paid great attention to the floor supporting and bottom shearing support. Numerical simulation and field monitoring show that the new method obtained good effect and it’s a kind of effective method to controlling large deformation of surrounding rocks of deep roadway.

Key words: deep mine, soft roadway, large deformation, floor supporting, bottom shearing support

CLC Number: 

  • TD 313+1
[1] LEI Jiang, CHEN Wei-zhong, LI Fan-fan, YU Hong-dan, MA Yong-shang, XIE Hua-dong, WANG Fu-gang, . Mechanical properties of surrounding rock in diversion tunnel of water diversion project from Hongyan River to Shitou River [J]. Rock and Soil Mechanics, 2019, 40(9): 3435-3446.
[2] CHEN Wei-zhong, TIAN Yun, WANG Xue-hai, TIAN Hong-ming, CAO Huai-xuan, XIE Hua-dong, . Squeezing prediction of tunnel in soft rocks based on modified [BQ] [J]. Rock and Soil Mechanics, 2019, 40(8): 3125-3134.
[3] ZHOU Xiao-wen, CHENG Li, ZHOU Mi, WANG Qi, . Behavior of ball penetration in clay in centrifuge testing [J]. Rock and Soil Mechanics, 2019, 40(5): 1713-1720.
[4] LIU Quan-sheng, DENG Peng-hai, BI Chen, LI Wei-wei, LIU Jun, . FDEM numerical simulation of the fracture and extraction process of soft surrounding rock mass and its rockbolt-shotcrete-grouting reinforcement methods in the deep tunnel [J]. Rock and Soil Mechanics, 2019, 40(10): 4065-4083.
[5] CUI Guang-yao, QI Jia-suo, WANG Ming-sheng, . Field test study on large deformation control of surrounding rock of cleaved basalt tunnel [J]. Rock and Soil Mechanics, 2018, 39(S2): 231-237.
[6] YANG Zhong-min , GAO Yong-tao , WU Shun-chuan, CHENG Zi-qiao,. Optimization study of first liner replacement timing of large deformation tunnel based on convergence-constraint principle [J]. , 2018, 39(S1): 395-404.
[7] YANG Peng, HUA Xin-zhu, LI Ying-fu, LIU Qin-jie, YANG Sen. Backfill horizontal stability analysis of gob-side entry retaining with compound roof in deep mine [J]. , 2018, 39(S1): 405-411.
[8] TANG Yu-feng, SHI Fu-qiang, LIAO Xue-yan, ZHOU Shuai, . Determination on flow rules of large deformation analysis of slope using SPH method [J]. , 2018, 39(4): 1509-1516.
[9] YANG Zhong-min, GAO Yong-tao, WU Shun-chuan, ZHOU Yu, . Physical model test on large deformation mechanism and key treatment techniques of tunnel [J]. Rock and Soil Mechanics, 2018, 39(12): 4482-4492.
[10] YANG Peng, HUA Xin-zhu, LIU Qin-jie, YANG Ming, CHENG Shi-xing, WU Biao,. Experimental study of dynamic evolution characteristic of floor fractal dimension of gob-side entry retaining with large section in deep mine [J]. , 2017, 38(S1): 351-358.
[11] ZHOU Zheng-long, CHEN Guo-xing, WU Qi. Effect of initial static shear stress on liquefaction and large deformation behaviors of saturated silt [J]. , 2017, 38(5): 1314-1320.
[12] ZHANG Yuan-chao, YANG Sheng-qi, CHEN Miao, ZANG Chuan-wei, LONG Jing-kui,. Deformation and failure mechanism of entity coal side and its control technology for roadway driving along next goaf in fully mechanized top coal caving face of deep mines [J]. , 2017, 38(4): 1103-1113.
[13] ZHUANG Hai-yang, HU Zhong-hua, WANG Rui, CHEN Guo-xing. Shear moduli reduction of saturated Nanjing sand under large deformation induced by liquefaction [J]. , 2017, 38(12): 3445-3452.
[14] LI Hong-jiang, LIU Song-yu, TONG Li-yuan, . A method for p-y curve of a single pile based on stress increment [J]. , 2017, 38(10): 2916-2922.
[15] SU Fang-mei, LIU Hai-xiao, LI Zhou. Analysis of ultimate bearing capacity of plate anchors in clay using a coupled Eulerian-Lagrangian method [J]. , 2016, 37(9): 2728-2736.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DONG Cheng, ZHENG Ying-ren, CHEN Xin-ying, TANG Xiao-song. Research on composite support pattern of soil nails and prestressed anchors in deep foundation pits[J]. , 2009, 30(12): 3793 -3796 .
[2] LI Rong-tao. A coupled chemoplastic-damage constitutive model for plain concrete subjected to high temperature[J]. , 2010, 31(5): 1585 -1591 .
[3] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[4] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[5] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[6] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[7] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[8] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .
[9] LU Wei,XIANG Yan-yong,TANG Chao. Model experiment and numerical simulation of flow and heat transfer for sand-filled fractured rock model[J]. , 2011, 32(11): 3448 -3454 .
[10] LIU Nian-ping , WANG Hong-tu , YUAN Zhi-gang , LIU Jing-cheng. Fisher discriminant analysis model of sand liquefaction and its application[J]. , 2012, 33(2): 554 -557 .