›› 2012, Vol. 33 ›› Issue (4): 1173-1177.

• Geotechnical Engineering • Previous Articles     Next Articles

Significance and interaction of factors on mechanical properties of frozen soil

LI Shun-qun1, 2, 3,GAO Ling-xia1, 4,CHAI Shou-xi2, 3   

  1. 1. State Key Laboratory of Frozen Soil Engineering, Chinese Academy of Sciences, Lanzhou 730000, China; 2. Department of Civil Engineering, Tianjin Institute of Urban Construction, Tianjin 300384, China; 3. Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment, Tianjin 300384, China; 4. School of Civil and Architecture Engineering, Dalian Nationalities University, Dalian, Liaoning 116600, China
  • Received:2010-10-26 Online:2012-04-13 Published:2012-04-26

Abstract: The mechanical properties of frozen soil depend on not only the single factor, such as water content, temperature, strain rate, salt content, confining pressure etc., but also on the possible interaction between the mentioned factors. In order to make sure of the dependence relationship of frozen soil strength and modulus with these factors, the significant and interaction of influencing factors of frozen soil mechanical properties is studied according to the experimental data and statistics theory. The study shows that the mentioned factors have obvious influence on the mechanical properties of frozen soils; however the factor of temperature is the most important one. Furthermore, the interactions on strength, which originating between temperature, water content and strain rate, are found to be obvious enough and can’t be neglected. Therefore, it is not rational that only some separate factors are taken into account as studying the mechanical properties. The most appropriate method is to study it in overall factors and with the interaction taken into consideration.

Key words: frozen soil, mechanical property, significance test, orthogonal test, interaction

CLC Number: 

  • TU 445
[1] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[2] WENG Yong-hong, ZHANG Lian, XU Tang-jin, HUANG Shu-ling, DING Xiu-li, . Safety evaluation on interaction of new plug structure and surrounding rock mass under high water head [J]. Rock and Soil Mechanics, 2020, 41(1): 242-252.
[3] DENG Hua-feng, ZHI Yong-yan, DUAN Ling-ling, PAN Deng, LI Jian-lin. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction [J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456.
[4] ZHU Cai-hui, CUI Chen, LAN Kai-jiang, DONG Yong-qiang. The effects of the degradation of brick-clay structure and demolition of embedded buildings on the stability of Yulin City Wall [J]. Rock and Soil Mechanics, 2019, 40(8): 3153-3166.
[5] YANG De-huan, YAN Rong-tao, WEI Chang-fu, PAN Xue-ying, ZHANG Qin, . A method for determining average intergranular stresses in saturated clays [J]. Rock and Soil Mechanics, 2019, 40(6): 2075-2084.
[6] LU Jun-long, ZHANG Yin, . Experimental study of the seismic response of the assembled multi-ribbed wall structure-subsoil system in frequency domain [J]. Rock and Soil Mechanics, 2019, 40(6): 2163-2171.
[7] SHI Li, WANG Hui-ping, SUN Hong-lei, PAN Xiao-dong, . Approximate analytical solution on vibrations of saturated ground induced by pile foundations [J]. Rock and Soil Mechanics, 2019, 40(5): 1750-1760.
[8] XIE Qiang, TIAN Da-lang, LIU Jin-hui, ZHANG Jian-hua, ZHANG Zhi-bin, . Simulation of seepage flow on soil slope and special stress-correction technique [J]. Rock and Soil Mechanics, 2019, 40(3): 879-892.
[9] WANG Yu-fei, LIU Run. Study on vertical-horizontal failure envelopes of shallow-embedded pipelines on sand [J]. Rock and Soil Mechanics, 2019, 40(3): 1129-1139.
[10] WANG Jia-quan, ZHANG Liang-liang, LAI Yi, LU Meng-liang, YE Bin, . Large-scale model tests on static and dynamic mechanical characteristics of reinforced earth retaining wall [J]. Rock and Soil Mechanics, 2019, 40(2): 497-505.
[11] LI Xin, LIU En-long, HOU Feng, . A creep constitutive model for frozen soils considering the influence of temperature [J]. Rock and Soil Mechanics, 2019, 40(2): 624-631.
[12] SONG Zhan-ping, CHENG Yun, YANG Teng-tian, HUO Run-ke, WANG Jun-bao, LIU Xin-rong, . Experimental study of the influence of osmotic pressure on pore structure evolution in limestone [J]. Rock and Soil Mechanics, 2019, 40(12): 4607-4619.
[13] ZHANG Ke, WANG Hai-jun, REN Ran, TANG Lei, YU Shu-yang, LIU Xin-na, GU Hao, . Fracture characteristics of sphere with 45ºdouble embedded cracks based on 3D-ILC [J]. Rock and Soil Mechanics, 2019, 40(12): 4731-4739.
[14] FENG Ling-yun, ZHU Bin, DAI Jia-lin, KONG De-qiong, . Modelling lateral pipe-soil interaction on soft clay using large displacement sequential limit analysis [J]. Rock and Soil Mechanics, 2019, 40(12): 4907-4915.
[15] GUO Kong-ling, YANG Lei, SHENG Xiang-chao, MEI Jie, LI Bang-xiang, ZHANG Bo, YANG Wei-min, SONG Guang-xiao, . Fracture mechanical behavior and AE characteristics of rock-like material containing 3-D crack under hydro-mechanical coupling [J]. Rock and Soil Mechanics, 2019, 40(11): 4380-4390.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Shu-lin,LI Fang,CHEN Jun. Electrical resistivity measurement for lime-stabilized silt soil[J]. , 2010, 31(1): 51 -55 .
[2] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[3] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[4] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[5] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[6] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[7] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[8] CHEN Li-wen, SUN De-an. Bifurcation analysis of overconsolidated clays with soil-water coupling along different stress paths[J]. , 2011, 32(10): 2922 -2928 .
[9] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .
[10] ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. , 2012, 33(2): 524 -530 .