›› 2012, Vol. 33 ›› Issue (4): 1268-1274.

• Numerical Analysis • Previous Articles     Next Articles

Development and application of Ramberg-Osgood soil dynamic nonlinear constitutive model on ABAQUS code

HU Qin,QI Cheng-zhi   

  1. Beijing Research Center for Engineering Structures and New Materials Engineering, School of Civil and Communication Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
  • Received:2010-10-18 Online:2012-04-13 Published:2012-04-26

Abstract: Based on the ABAQUS finite element code, the soil dynamic nonlinear constitutive model of Ramberg- Osgood has been modified. Based on the appropriate assumptions, the procedure and the algorithm for evaluation of the model’s parameters R and ? are derived. Loading and unloading rules of the hysteresis correspond to the revised Masing criterion. Three-dimensional nonlinear ground seismic analysis has been performed, the influence of seismic waves with different input peak value on soil stress-strain relationship has been analyzed, and the results have been compared with that of the one-dimensional soil dynamic analysis on Shaking code. The results show that the horizontal displacement and relative displacement obtained by the nonlinear analysis are greater than that obtained by equivalent linearization method, which indicates that the selection of constitutive model will affect the obtained results of ground seismic response; thus it is necessary to select the appropriate model in engineering application and make reasonable judgments for the final result.

Key words: soil dynamic nonlinearity, Ramberg-Osgood model, ground seismic, Masing criterion, ABAQUS code

CLC Number: 

  • TU 435
[1] LUO Lan, XIA Tang-dai, QIU Hao-miao, . Effect of particle shape on shear modulus of sand in K0 condition [J]. , 2018, 39(10): 3695-3702.
[2] BAO Han-ying, CHEN Wen-hua, ZHANG Qian. Propagation of subway vertical vibration in layered soils based on thin layer method and moving coordinate system method [J]. , 2018, 39(9): 3277-3284.
[3] LI Zhi-yuan, LI Jian-bo, LIN Gao, HAN Ze-jun,. Analysis of scattered field characteristics of valley embedded in layered soil [J]. , 2018, 39(9): 3453-3460.
[4] SONG Jia, GU Quan, XU Cheng-shun, DU Xiu-li,. Implementation of fully explicit method for dynamic equation of saturated soil in OpenSees [J]. , 2018, 39(9): 3477-3485.
[5] SONG Jia, DU Xiu-li, XU Cheng-shun, SUN Bao-yin,. Research on the dynamic responses of saturated porous media-pile foundation-superstructure system [J]. , 2018, 39(8): 3061-3070.
[6] KONG Gang-qiang, LI Hui, WANG Zhong-tao , WEN Lei,. Comparison of dynamic properties between transparent sand and natural sand [J]. , 2018, 39(6): 1935-1940.
[7] LU Jian-fei, ZHOU Hui-ming, LIU Yang. Reflection-transmission matrix method for dynamic response of transversely isotropic multilayered saturated soil [J]. , 2018, 39(6): 2219-2226.
[8] YU Xiang, KONG Xian-jing, ZOU De-gao, ZHOU Chen-guang, . Seismic wave input method for nonlinear dynamic analysis of earth dam built on overburden [J]. , 2018, 39(5): 1858-1866.
[9] ZHU Jiao, XU Han-gang, CHEN Guo-xing, . Comparison of 1D equivalent-linear and nonlinear seismic site responses for quaternary deep sediment layers in Suzhou region [J]. , 2018, 39(4): 1479-1490.
[10] NIU Ting-ting, LIU Han-long, DING Xuan-ming, CHEN Yun-min,. Piled embankment model test on vibration characteristics under high-speed train loads [J]. , 2018, 39(3): 872-880.
[11] CUI Fang-peng, XU Qiang, YIN Yue-ping, HU Rui-lin, CHEN Zi-juan, LIU Wei,. Dynamic response of slope based on fracture mechanisms of strip-shape hypocenter [J]. , 2018, 39(1): 320-330.
[12] CHEN Shi-jie, MA Wei, LI Guo-yu, LIU En-long, ZHANG Ge, . Development and application of triaxial apparatus of frozen soil used in conjunction with medical CT [J]. , 2017, 38(S2): 359-367.
[13] ZHANG Min, SHANG Wei, ZHOU Zhong-chao, GUO Cheng,. Propagation characteristics of Rayleigh waves in double-layer unsaturated soils [J]. , 2017, 38(10): 2931-2938.
[14] PENG Dong, CHE Ai-lan, FENG Shao-kong, WANG Huan,. An impact imaging method for defect detection and its application in geotechnical engineering [J]. , 2017, 38(9): 2764-2772.
[15] ZHOU Yan-guo, TAN Xiao-ming, LIANG Tian, HUANG Bo, LING Dao-sheng, CHEN Yun-min,. Evaluation of soil liquefaction by ground motion intensity index by centrifuge model test [J]. , 2017, 38(7): 1869-1877.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[3] LI Rong-tao. A coupled chemoplastic-damage constitutive model for plain concrete subjected to high temperature[J]. , 2010, 31(5): 1585 -1591 .
[4] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[5] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[6] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[7] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[8] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[9] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .
[10] LIU Nian-ping , WANG Hong-tu , YUAN Zhi-gang , LIU Jing-cheng. Fisher discriminant analysis model of sand liquefaction and its application[J]. , 2012, 33(2): 554 -557 .