›› 2012, Vol. 33 ›› Issue (4): 1261-1267.

• Numerical Analysis • Previous Articles     Next Articles

Numerical simulation of embankment on sloped weak ground reinforced by anti-slide piles

JIANG Xin,LIU Jin-nan,HUANG Ming-xing,QIU Yan-jun   

  1. MOE Key Laboratory of High-speed Railway Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2010-09-25 Online:2012-04-13 Published:2012-04-26

Abstract: Sloped weak ground under the load of the embankment easily triggers major engineering accidents such as large lateral deformation and slump. It is the core design principles of embankment on sloped weak ground that application of reinforced by concrete anti-slide pile at the corner of embankment can effectively limit lateral deformation of the foundation. This paper studies the influence of the pile design parameters such as pile spacing, pile length, elastic modulus, cross-section dimension and the position of piles on its internal forces and deformation by using 3D fast Lagrangian analysis of continua, comparing with the results of indoor geotechnical centrifugal model tests, and building precise numerical analysis model of embankment on sloped weak ground reinforced by anti-slide piles. Research results show that, using anti-slide piles at the downhill toe of embankment could significantly restrict the lateral deformation of sloped weak ground. It will comprehensively consider the factors such as force, economy, construction etc. in order to confirm the reasonable pile spacing; anti-slide piles must penetrate potential slip surface, but with the increase of the length of pile, the reinforcement effect does not significantly increase; with the increase of elastic modulus, cross- section dimension of pile, the reinforcement effect is improved in some extent; anti-slide pile is suitable to set at the middle of bypass downhill slope of the embankment

Key words: highway engineering, sloped weak ground, embankment, anti-slide pile, finite difference method

CLC Number: 

  • TU 751.4
[1] HE Zhi-jun, LEI Hao-cheng, XIA Zhang-qi, ZHAO Lian-heng. Analysis of settlement and internal force displacement of single pile in multilayer soft soil foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 655-666.
[2] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[3] WANG Qing-zhi, FANG Jian-hong, CHAO Gang. Analysis of cooling effect of block-stone expressway embankment in warm temperature permafrost region [J]. Rock and Soil Mechanics, 2020, 41(1): 305-314.
[4] CHEN Dong, WANG En-yuan, LI Nan, . Study on wave field characteristics of different media models of coal and rock [J]. Rock and Soil Mechanics, 2019, 40(S1): 449-458.
[5] LU Liang, SHI Tong-hui, YANG Dong, . Control effect of uneven settlement of subgrade by composited method of replacement load shedding and reinforced embankment [J]. Rock and Soil Mechanics, 2019, 40(9): 3474-3482.
[6] CHEN Yong-qing, WEN Chang-ping, FANG Xuan-qiang, . Modified Yin’s double-yield-surface model for bioenzyme-treated expansive soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3515-3523.
[7] CHEN Chong, WANG Wei, LÜ Hua-yong, . Stability analysis of slope reinforced with composite anti-slide pile model [J]. Rock and Soil Mechanics, 2019, 40(8): 3207-3217.
[8] WANG Hong-lei, SUN Zhi-zhong, LIU Yong-zhi, WU Gui-long, . The monitoring analysis of the thermal-mechanical response on embankment with thawed interlayer along Qinghai-Tibet Railway [J]. Rock and Soil Mechanics, 2019, 40(7): 2815-2824.
[9] GONG Wen-hui, ZHAO Xu-dong, QIU Jin-wei, LI Yi, YANG Han. Nonlinear analysis of one-dimensional consolidation of saturated clay including dead-weight effects and large strain [J]. Rock and Soil Mechanics, 2019, 40(6): 2099-2107.
[10] LIU Zhong-yu, CUI Peng-lu, ZHENG Zhan-lei, XIA Yang-yang, ZHANG Jia-chao. Analysis of one-dimensional rheological consolidation with flow described by non-Newtonian index and fractional-order Merchant’s model [J]. Rock and Soil Mechanics, 2019, 40(6): 2029-2038.
[11] FU Hong-yuan, LIU Jie, ZENG Ling, BIAN Han-bing, SHI Zhen-ning, . Deformation and strength tests of pre-disintegrating carbonaceous mudstone under loading and soaking condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1273-1280.
[12] WEI Shao-wei, SUI Yan-yang, YANG Jian-min, . Model tests on anti-sliding mechanism of circular and rectangular cross section anti-sliding piles [J]. Rock and Soil Mechanics, 2019, 40(3): 951-961.
[13] ZHENG Dong, HUANG Jin-song, LI Dian-qing, . An approach for predicting embankment settlement by integrating multi-source information [J]. Rock and Soil Mechanics, 2019, 40(2): 709-719.
[14] ZHANG Ling, CHEN Jin-hai, ZHAO Ming-hua. Maximum cantilever anti-slide piles spacing determination with consideration of soil arching effect [J]. Rock and Soil Mechanics, 2019, 40(11): 4497-4505.
[15] LEI Da, JIANG Guan-lu, SUN Sheng-jie, QI Zhi-hui, LI An-hong, . Study of bridge foundation on slope reinforced by anti-slide piles on shaking table [J]. Rock and Soil Mechanics, 2019, 40(1): 127-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] QI Ji-lin,MA Wei. State-of-art of research on mechanical properties of frozen soils[J]. , 2010, 31(1): 133 -143 .
[2] DING Li-feng, GUO Qi-liang, WANG Cheng-hu. Research and application of testing methods for engineering rock mass fissure permeability[J]. , 2009, 30(9): 2599 -2604 .
[3] JIANG Hao,WANG Ren,Lü Ying-hui,MENG Qing-shan. Test study of model pile in calcareous sands[J]. , 2010, 31(3): 780 -784 .
[4] ZHONG Guo-sheng, XIONG Zheng-ming. Safety assessment of structure by blasting seism based on wavelet packet energy spectra[J]. , 2010, 31(5): 1522 -1528 .
[5] LI Jian-hua, XU Bin, XU Man-qing, LIU You-ping. Vibration isolation using pile rows in a layered poroelastic half-space against vibration due to harmonic loads[J]. , 2010, 31(S2): 12 -18 .
[6] GAO Wen-hua, ZHU Jian-qun, ZHANG Zhi-min, HUANG Zi-yong. Numerical simulation of ultimate bearing capacity of soft rock foundation based on Hoek-Brown nonlinear failure criterion[J]. , 2011, 32(2): 593 -598 .
[7] LENG Yi,LUAN Mao-tian,XU Cheng-shun,MA Tai-lei. Experimental research on behaviors of saturated sand subject to drained shear strength under complex stress conditions[J]. , 2009, 30(6): 1620 -1626 .
[8] ZHANG Ding-wen,LIU Song-yu,GU Chen-ying. Elastoplastic analysis of cylindrical cavity expansion with anisotropic initial stress[J]. , 2009, 30(6): 1631 -1634 .
[9] DENG Hua-feng,ZHANG Guo-dong,WANG Le-hua,DENG Cheng-jin,GUO Jing,LU Tao. Monitoring and analysis of blasting vibration in diversion tunnel excavation[J]. , 2011, 32(3): 855 -860 .
[10] DING Xuan-ming, LIU Han-long. Comparative analysis of dynamic responses of cast-in-place concrete large-diameter pipe pile and solid pile in homogeneous soil[J]. , 2011, 32(S1): 260 -264 .