Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (8): 3207-3217.doi: 10.16285/j.rsm.2018.0747

• Numerical Analysis • Previous Articles     Next Articles

Stability analysis of slope reinforced with composite anti-slide pile model

CHEN Chong1, WANG Wei2, LÜ Hua-yong3   

  1. 1. Department of Engineering Physics, Tsinghua University, Beijing 100084, China; 2. School of Civil Engineering, Tsinghua University, Beijing 100084, China; 3. School of Architecture and Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
  • Received:2019-07-28 Online:2019-08-12 Published:2019-08-25
  • Supported by:
    This work was supported by the National Key Research and Development Program (2018YFC1507805).

Abstract: The numerical analysis method is an important method to study the stability of the slope reinforced with anti-slide pile, which can take both the mechanical behavior of the anti-slide pile and the stability of the slope into consideration at the same time. However, in the previous numerical simulation, it is hard to find a numerical model of the anti-slide pile with easy modeling, high precision and low time cost. Therefore, an anti-slide pile model coupled with the composite solid-structural element is proposed in this study. Based on this model, the influence of design parameters such as pile location and space on the stability of slope reinforced by composite anti-slide pile are studied under the free and fixed constraints of anti-slide pile top. Besides, the potential failure modes of anti-slide pile is also studied. The results show that the proposed model can realistically simulate the mechanical properties of the pile with a high calculation accuracy, and the calculation results are independent on the mesh density. When the anti-slide pile is arranged in the middle of the slope, the safety factor of the reinforced slope reaches to a maximum value. The closer to both ends of the slope, the smaller the safety factor of the reinforced slope. When the pile space is less than 3D, the potential sliding surface of the slope is divided into two independent parts, and the soil between the piles forms an obvious stress arch. When the pile space is larger than 4D, the plastic shear zone of the center soil between the piles completely penetrates, and the soil between the piles forms the reverse stress arch. When the anti-sliding piles are arranged in the middle ( 0.5) and in the lower part of the slope ( 0.3) with the free and fixed constraints in pile top, respectively, the anti-sliding pile is easy to bend and damage. The results have guiding significance for the engineering design of slope reinforced with anti-slide pile.

Key words: anti-slide pile, slope, stability, pile location, pile space, failure discrimination

CLC Number: 

  • TU 473
[1] DU Wen-jie, SHENG Qian, FU Xiao-dong, TANG Hua, CHEN He, DU Yu-xiang, ZHOU Yong-qiang. Dynamic stability analysis and failure mechanism of Yanyang village landslide under earthquake [J]. Rock and Soil Mechanics, 2020, 41(7): 2461-2469.
[2] MAO Hao-yu, XU Nu-wen, LI Biao, FAN Yi-lin, WU Jia-yao, MENG Guo-tao, . Stability analysis of an underground powerhouse on the left bank of the Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. Rock and Soil Mechanics, 2020, 41(7): 2470-2484.
[3] XIAO Shi-guo, LIU Hang, YU Xin-zuo. Analysis method of seismic overall stability of soil slopes retained by gravity walls anchored horizontally with flexible reinforcements [J]. Rock and Soil Mechanics, 2020, 41(6): 1836-1844.
[4] RONG Chi, CHEN Wei-zhong, YUAN Jing-qiang, ZHANG Zheng, ZHANG Yi, ZHANG Qing-yan, LIU Qi, . Study on new sodium silicate-ester grouting material and its properties of grouted-sand [J]. Rock and Soil Mechanics, 2020, 41(6): 2034-2042.
[5] REN Yang, LI Tian-bin, LAI Lin. Centrifugal shaking table test on dynamic response characteristics of tunnel entrance slope in strong earthquake area [J]. Rock and Soil Mechanics, 2020, 41(5): 1605-1612.
[6] WANG Hong-xin, SHEN Xu-kai, . Heave-resistant stability analysis method of foundation pit considering support [J]. Rock and Soil Mechanics, 2020, 41(5): 1680-1689.
[7] XIAO Ming-qing, XU Chen, . Discussion on stability analysis method of tunnel surrounding rock based on critical stable section [J]. Rock and Soil Mechanics, 2020, 41(5): 1690-1698.
[8] ZHANG Lu-ming, ZHOU Yong, FAN Gang, CAI Hong-yu, DONG Yun. Seismic behavior research and reinforcement effect evaluation of composite retaining structures with nuclear safety level anti-dip layered soft rock slope under strong earthquakes [J]. Rock and Soil Mechanics, 2020, 41(5): 1740-1749.
[9] JIAN Wen-bin, HUANG Cong-hui, LUO Yang-hua, NIE Wen. Experimental study on wetting front migration induced by rainfall infiltration in unsaturated eluvial and residual soil [J]. Rock and Soil Mechanics, 2020, 41(4): 1123-1133.
[10] ZHU Yan-peng, YAN Zi-hao, ZHU Yi-fan. Stability calculation of micro steel tube mortar composite pile in soil [J]. Rock and Soil Mechanics, 2020, 41(4): 1339-1346.
[11] YANG Feng, HE Shi-hua, WU Yao-jie, JI Li-yan, LUO Jing-jing, YANG Jun-sheng. Tunnel face stability analysis by the upper-bound finite element method with rigid translatory moving element in heterogeneous clay [J]. Rock and Soil Mechanics, 2020, 41(4): 1412-1419.
[12] MI Bo, XIANG Yan-yong, . Model experiment and calculation analysis of excavation-seepage stability for shallow shield tunneling in sandy ground [J]. Rock and Soil Mechanics, 2020, 41(3): 837-848.
[13] ZHOU Zi-han, CHEN Zhong-hui, WANG Jian-ming, ZHANG Ling-fan, NIAN Geng-qian. Catastrophe analysis of open-pit slope stability under blasting load [J]. Rock and Soil Mechanics, 2020, 41(3): 849-857.
[14] BI Zong-qi, GONG Quan-mei, ZHOU Shun-hua, CHENG Qian, . Experimental study of the evolution law of vertical soil arch under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(3): 886-894.
[15] SHI Zhen-ning, QI Shuang-xing, FU Hong-yuan, ZENG Ling, HE Zhong-ming, FANG Rui-min, . A study of water content distribution and shallow stability of earth slopes subject to rainfall infiltration [J]. Rock and Soil Mechanics, 2020, 41(3): 980-988.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!