Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (4): 1339-1346.doi: 10.16285/j.rsm.2019.0583

• Geotechnical Engineering • Previous Articles     Next Articles

Stability calculation of micro steel tube mortar composite pile in soil

ZHU Yan-peng1, 2, YAN Zi-hao1, 2, ZHU Yi-fan3   

  1. 1. Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 2. Western Engineering Research Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 3. College Park, University of Maryland, College Park, MD, 20740, USA
  • Received:2019-03-27 Revised:2019-06-07 Online:2020-04-11 Published:2020-07-01
  • Supported by:
    This work was supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (IRT_17R51) and the Major Project of Science and Technology Plan Projects of Gansu Province (1302FKDA030).

Abstract: The micro steel tube mortar composite pile is widely used in foundation reinforcement and pile replacement because of its clear force mechanism, simple construction, short construction period and low cost. However, there is rare theoretical study on instability or failure of micro steel tube mortar composite piles with small diameter and large length in soil. Therefore, on the basement of the theory of elastic foundation beam, the differential equation is solved according to the force relationship between the pile and the foundation soil. The specific expression of the bearing capacity for instability of the micro steel tube mortar composite pile is given. By comparing with the actual engineering in situ test, it is found that the theoretical and experimental results are close. An expression calcuating the minimum critical length is given to guide the construction of the project. Through a program writen in Matlab, the instability load refering to different pile lengths is calculated and analyzed under different stiffness ratios between soil and pile, which reflects the influence degree of soil on the instability and restraint force of micro steel tube mortar composite piles.

Key words: stability, analytical solution, k method, micro steel pipe mortar composite pile

CLC Number: 

  • TU 473
[1] WU Ben, LIU Wei, SHI Pei-xin, FU Chun-qing, . Two-dimensional spiral failure model of the heading face of shield tunneling [J]. Rock and Soil Mechanics, 2021, 42(3): 767-774.
[2] ZHANG Gui-min, WANG Zhen-shuo, LIU Yu-xuan, LUO Ning, DONG Ji-wei, . Research on stability of the key roof above horizontal salt cavern for compressed air energy storage [J]. Rock and Soil Mechanics, 2021, 42(3): 800-812.
[3] ZHENG Hong, ZHANG Tan, WANG Qiu-sheng. One package of schemes for some difficult issues in finite element plasticity analysis [J]. Rock and Soil Mechanics, 2021, 42(2): 301-314.
[4] YANG Chun-he, ZHANG Chao, LI Quan-ming, YU Yu-zhen, MA Chang-kun, DUAN Zhi-jie, . Disaster mechanism and prevention methods of large-scale high tailings dam [J]. Rock and Soil Mechanics, 2021, 42(1): 1-17.
[5] ZHU Sai-nan, LI Wei-hua, LEE Vincent W, ZHAO Cheng-gang, . Analytical solution of seismic response of an undersea cavity under incident P1-wave [J]. Rock and Soil Mechanics, 2021, 42(1): 93-103.
[6] HUANG Chao-xuan, YUAN Wen-xi, HU Guo-jie, . An estimation method of horizontal bearing capacity of piles after pre-consolidation treatment for layered soft foundation [J]. Rock and Soil Mechanics, 2021, 42(1): 113-124.
[7] FENG Qing-gao, CAI Bing-hua, FENG Xiao-la, YUAN Xiang, . Analytical solutions of transient flow model for a partially penetrating well in a finite leaky confined aquifer system [J]. Rock and Soil Mechanics, 2021, 42(1): 168-176.
[8] LI Jian-dong, WANG Xu, ZHANG Yan-jie, JIANG Dai-jun, LIU De-ren, LI Sheng. Study of thermal moisture migration of unsaturated loess with water vapor [J]. Rock and Soil Mechanics, 2021, 42(1): 186-192.
[9] HU An-feng, ZHOU Yu-shan, CHEN Yuan, XIA Chang-qing, XIE Kang-he, . Semi-analytical solutions for one-dimensional nonlinear large strain consolidation of structured soft clay [J]. Rock and Soil Mechanics, 2020, 41(8): 2583-2591.
[10] PAN Yong-liang, JIAN Wen-xing, LI Lin-jun, LIN Yu-qiu, TIAN Peng-fei. A study on the rainfall infiltration of granite residual soil slope with an improved Green-Ampt model [J]. Rock and Soil Mechanics, 2020, 41(8): 2685-2692.
[11] LI Jian-fei, SU Yang, SUN Zhi-bin, ZHAO Chen, . 3D seismic displacement analysis method of stepped slopes reinforced with piles based on Newmark principle [J]. Rock and Soil Mechanics, 2020, 41(8): 2785-2795.
[12] DU Wen-jie, SHENG Qian, FU Xiao-dong, TANG Hua, CHEN He, DU Yu-xiang, ZHOU Yong-qiang. Dynamic stability analysis and failure mechanism of Yanyang village landslide under earthquake [J]. Rock and Soil Mechanics, 2020, 41(7): 2461-2469.
[13] MAO Hao-yu, XU Nu-wen, LI Biao, FAN Yi-lin, WU Jia-yao, MENG Guo-tao, . Stability analysis of an underground powerhouse on the left bank of the Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. Rock and Soil Mechanics, 2020, 41(7): 2470-2484.
[14] XIAO Shi-guo, LIU Hang, YU Xin-zuo. Analysis method of seismic overall stability of soil slopes retained by gravity walls anchored horizontally with flexible reinforcements [J]. Rock and Soil Mechanics, 2020, 41(6): 1836-1844.
[15] JIANG Liu-hui, LI Chuan-xun, YANG Yi-qing, ZHANG Rui. Approximate analytical solutions for one-dimensional nonlinear consolidation of double-layered soil under time-dependent loading [J]. Rock and Soil Mechanics, 2020, 41(5): 1583-1590.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] MA Kang, XU Jin, WU Sai-gang, ZHANG Ai-hui. Research on surrounding rock stability in local collapse section of highway tunnels[J]. , 2009, 30(10): 2955 -2960 .
[3] ZHU Ze-qi, SHENG Qian, MEI Song-hua, ZHANG Zhan-rong. Improved ubiquitous-joint model and its application to underground engineering in layered rock masses[J]. , 2009, 30(10): 3115 -3121 .
[4] SUN Shu-lin,LI Fang,CHEN Jun. Electrical resistivity measurement for lime-stabilized silt soil[J]. , 2010, 31(1): 51 -55 .
[5] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[6] JIANG Yao-dong,ZHAO Yi-xin,ZHOU Gang,SUN Lei4,QIN Wei. Multi-parameter monitoring of frozen soil structure with super-long freezing hole drilling in Guangzhou metro[J]. , 2010, 31(1): 158 -164 .
[7] YAO Yang-ping,FENG Xing,HUANG Xiang,LI Chun-liang. Application of UH model to finite element analysis[J]. , 2010, 31(1): 237 -245 .
[8] ZHANGg Yi-feng,YAO Dao-ping,XIE Zhi-zhao,XU Yi-xi,LI Guang-ming, YE You-quan. Analysis of master control factor of blasting seismic effect and discussion on shock absorption measures[J]. , 2010, 31(1): 304 -308 .
[9] FAN Liu-ming, ZHANG Lei-yu. Time-history algorithm for earthquake effect in layered-soil site[J]. , 2009, 30(9): 2564 -2568 .
[10] CHEN Chang-fu, ZHOU Zhi-jun. Analysis of pile-soil stress ratio for double reinforced composite ground[J]. , 2009, 30(9): 2660 -2666 .