Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (1): 113-124.doi: 10.16285/j.rsm.2020.0797

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

An estimation method of horizontal bearing capacity of piles after pre-consolidation treatment for layered soft foundation

HUANG Chao-xuan1, YUAN Wen-xi1, HU Guo-jie2   

  1. 1. Zhejiang Design Institute of Water Conservancy and Hydroelectric Power, Hangzhou, Zhejiang 310002, China; 2. Cryosphere Research Station on Qinghai-Xizang Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2020-06-11 Revised:2020-10-11 Online:2021-01-11 Published:2021-01-06
  • Supported by:
    This work was supported by the Basic Public Welfare Research Project of Zhejiang Province (LGF18E090004), the Science and Technology Project of Zhejiang Water Resources Department (RC1701) and the Science Standard Industry Project of Zhejiang Water Conservancy and Hydropower Survey & Design Institute (B1803).

Abstract: At present, the improvement of the horizontal bearing capacity of the piles by pre-consolidation of the soft soil foundation has been well recognized by practising engineers. However, how to estimate the increment of horizontal bearing capacity of piles during the pre-engineering process is still difficult. In this article, a practical calculation method for estimating the increment of horizontal bearing capacity of piles is established based on the Bowles[1] method and by considering the impact of pre-drainage and pre-consolidation treatment of the layered soft soil foundation. This method provides an effective way to calculate the shear strength index and pre-consolidation treatment time based on the shear strength of undisturbed soft soil by laboratory test. Meanwhile, the elastoplastic solution of the horizontally loaded pile and the calculation formula of the plastic zone depth of layered soft soil foundation are analytically derived, based on the influence of elastoplastic yielding of soils surrounding the pile. In addition, the source code for computing the horizontal displacement of the pile top and the maximum bending moment of the pile body are given. Finally, the horizontal displacement, bearing capacity and the maximum bending moment of piles in the sluice pile foundation engineering case in Zhejiang Province are calculated according to the proposed method. The results of the field tests before and after the pre-consolidation treatments are compared. It is found that the estimated results are close to the test results, which may provide a good reference for similar engineering designs.

Key words: pre-consolidation treatment, horizontal bearing capacity of pile foundation, horizontal resistance, power series solution method, yield displacement, shear strength index, analytical solution

CLC Number: 

  • U 473
[1] QIN Ai-fang, JIANG Liang-hua, XU Wei-fang, MEI Guo-xiong, . Analytical solution to consolidation of unsaturated soil by vertical drains with continuous permeable boundary [J]. Rock and Soil Mechanics, 2021, 42(5): 1345-1354.
[2] LING Dao-sheng, ZHAO Tian-hao, NIU Jia-jun, ZHU Song, SHAN Zhen-dong, . Analytical solutions for 1D consolidation of unsaturated soils with mixed nonhomogeneous boundary conditions [J]. Rock and Soil Mechanics, 2021, 42(4): 883-891.
[3] ZHOU Feng-xi, ZHOU Zhi-xiong, LIU Hong-bo, . Analogous relationship between the solutions of non-homogeneous foundation and homogeneous foundation: elastic wave velocity [J]. Rock and Soil Mechanics, 2021, 42(4): 892-898.
[4] YANG Ai-wu, YANG Shao-peng, LANG Rui-qing, CHEN Zi-he, . Three-dimensional mechanical properties of light solidified saline soil [J]. Rock and Soil Mechanics, 2021, 42(3): 593-600.
[5] ZHU Sai-nan, LI Wei-hua, LEE Vincent W, ZHAO Cheng-gang, . Analytical solution of seismic response of an undersea cavity under incident P1-wave [J]. Rock and Soil Mechanics, 2021, 42(1): 93-103.
[6] FENG Qing-gao, CAI Bing-hua, FENG Xiao-la, YUAN Xiang, . Analytical solutions of transient flow model for a partially penetrating well in a finite leaky confined aquifer system [J]. Rock and Soil Mechanics, 2021, 42(1): 168-176.
[7] LI Jian-dong, WANG Xu, ZHANG Yan-jie, JIANG Dai-jun, LIU De-ren, LI Sheng. Study of thermal moisture migration of unsaturated loess with water vapor [J]. Rock and Soil Mechanics, 2021, 42(1): 186-192.
[8] HU An-feng, ZHOU Yu-shan, CHEN Yuan, XIA Chang-qing, XIE Kang-he, . Semi-analytical solutions for one-dimensional nonlinear large strain consolidation of structured soft clay [J]. Rock and Soil Mechanics, 2020, 41(8): 2583-2591.
[9] JIANG Liu-hui, LI Chuan-xun, YANG Yi-qing, ZHANG Rui. Approximate analytical solutions for one-dimensional nonlinear consolidation of double-layered soil under time-dependent loading [J]. Rock and Soil Mechanics, 2020, 41(5): 1583-1590.
[10] ZHU Yan-peng, YAN Zi-hao, ZHU Yi-fan. Stability calculation of micro steel tube mortar composite pile in soil [J]. Rock and Soil Mechanics, 2020, 41(4): 1339-1346.
[11] LIU Guo-zhao, QIAO Ya-fei, HE Man-chao, FAN Yong, . An analytical solution of longitudinal response of tunnels under dislocation of active fault [J]. Rock and Soil Mechanics, 2020, 41(3): 923-932.
[12] CHENG Tao, YAN Ke-qin, HU Ren-jie, ZHENG Jun-jie, ZHANG Huan, CHEN He-long, JIANG Zhi-jie, LIU Qiang, . Analytical method for quasi-two-dimensional plane strain consolidation problem of unsaturated soil [J]. Rock and Soil Mechanics, 2020, 41(2): 453-460.
[13] MENG Yu-han, ZHANG Bi-sheng, CHEN Zheng, MEI Guo-xiong, . Consolidation analysis of foundation with sand blankets under ramp loading [J]. Rock and Soil Mechanics, 2020, 41(2): 461-468.
[14] LI Qiang, GAO Song, NIU Hong-kai , SHANG Yang-liang, . Analytical solution to saturation line of tailings pond and its applicability analysis [J]. Rock and Soil Mechanics, 2020, 41(11): 3714-3721.
[15] ZHANG Yu-guo, WAN Dong-yang, ZHENG Yan-lin, HAN Shuai, YANG Han-yue, DUAN Meng-meng. Analytical solution for consolidation of vertical drain under vacuum preloading considering the variation of radial permeability coefficient [J]. Rock and Soil Mechanics, 2019, 40(9): 3533-3541.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[3] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[4] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[5] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[6] LU Zheng, YAO Hai-lin, LUO Xing-wen, HU Meng-ling. 3D dynamic responses of layered ground under vehicle loads[J]. , 2009, 30(10): 2965 -2970 .
[7] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
[8] CHU Xi-hua, XU Yuan-jie. Studies on transformation from M-C criterion to Drucker-Prager criterions based on distortion energy density[J]. , 2009, 30(10): 2985 -2990 .
[9] WANG Shu-yun, LU Xiao-bing, ZHAO Jing, WANG Ai-lan. Post-cyclic loading undrained strength degradation characteristics of silty clay[J]. , 2009, 30(10): 2991 -2995 .
[10] LI Lei, ZHU Wei, LIN Cheng, T. OHKI. Study of wet and dry properties of solidified sludge[J]. , 2009, 30(10): 3001 -3004 .