Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (3): 767-774.doi: 10.16285/j.rsm.2020.1081

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Two-dimensional spiral failure model of the heading face of shield tunneling

WU Ben1, LIU Wei1, SHI Pei-xin1, FU Chun-qing2   

  1. 1. School of Rail Transportation, Soochow University, Suzhou, Jiangsu 215000, China; 2. Beijing Uni.-Construction Group Co., Ltd., Beijing 100100, China
  • Received:2020-07-27 Revised:2020-12-18 Online:2021-03-11 Published:2021-03-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51978430, 51778386).

Abstract: This research develops a two-dimensional logarithmic spiral dynamic failure model to solve the problem of heading face instability of shield tunneling. By discretizing the dynamic failure model, the dissipation power of the system in the failure zone can be calculated accurately, and the upper bound solution of support pressure can be derived by using the upper bound method. Based on the current solution, the failure mode of instability and the corresponding limit support pressure at collapse were obtained by optimization. Through parameter analysis, the influence of soil strength on the failure mode and limit support pressure was analyzed. The results showed that with the increase of soil strength, the failure zone becomes smaller and the failure height and support pressure decrease correspondingly. The analytical solutions, including the failure mode and limit support pressure, obtained by the two-dimensional logarithmic spiral model were compared with those obtained by the numerical simulation and the existing analytical solutions. The comparative analysis showed that the analytical solutions by the proposed model are in good agreement with those from numerical simulation and other existing theoretical models. Finally, the model test was selected as an example to verify the model and the results showed that the solutions from the proposed model are close to the previous test results. The analytical solutions from the two-dimensional logarithmic dynamic failure model can provide a theoretical basis for engineering design in predicting the failure mode and limit support pressure.

Key words: shield tunnel, heading face stability, soil mechanics, upper bound analysis, support pressure

CLC Number: 

  • TU91
[1] LIU Jia, FENG De-luan, . A multi-scale coupling finite element method based on the microscopic soil particle motions [J]. Rock and Soil Mechanics, 2021, 42(4): 1186-1200.
[2] ZHANG Ze, MA Wei, ROMAN Lidia, MELNIKOV Andrey, YANG Xi, LI Hong-bi, . Freeze-thaw cycles-physical time analogy theory based method for predicting long-term shear strength of frozen soil [J]. Rock and Soil Mechanics, 2021, 42(1): 86-92.
[3] DAI Xuan, GUO Wang, CHENG Xue-song, HUO Hai-feng, LIU Guo-guang, . Field measurement and numerical analysis for evaluating longitudinal settlement induced by shield tunneling parallel to building [J]. Rock and Soil Mechanics, 2021, 42(1): 233-244.
[4] MI Bo, XIANG Yan-yong, . Model experiment and calculation analysis of excavation-seepage stability for shallow shield tunneling in sandy ground [J]. Rock and Soil Mechanics, 2020, 41(3): 837-848.
[5] LIU Jia-shun, WANG Lai-gui, ZHANG Xiang-dong, YANG Jian-jun, SUN Jia-bao, . An asymptotic state constitutive model for saturated clay under partial drainage [J]. Rock and Soil Mechanics, 2020, 41(2): 485-491.
[6] YANG Zhen-xing, CHEN Jian, SUN Zhen-chuan, YOU Yong-feng, ZHOU Jian-jun, LÜ Qian-qian, . Experimental study on improved seawater slurry for slurry shield [J]. Rock and Soil Mechanics, 2020, 41(2): 501-508.
[7] WEI Gang, ZHANG Xin-hai, LIN Xin-bei, HUA Xin-xin, . Variations of transverse forces on nearby shield tunnel caused by foundation pits excavation [J]. Rock and Soil Mechanics, 2020, 41(2): 635-644.
[8] HOU Gong-yu, LI Zi-xiang, HU Ta, ZHOU Tian-ci, XIAO Hai-lin, . Study on monitoring error of distributed optical fiber using fixed-point layout for tunnel deformation monitoring [J]. Rock and Soil Mechanics, 2020, 41(10): 3481-3490.
[9] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[10] WANG Zhong-kai, XU Guang-li. Influence range and quantitative prediction of surface deformation during shield tunnelling and exiting stages [J]. Rock and Soil Mechanics, 2020, 41(1): 285-294.
[11] ZHANG Ding-wen, LIU Zhi-xiang, SHEN Guo-gen, E Jun-yu, . Measurement of earth pressure of shallow buried tunnel with super large diameter and applicability evaluation of calculation method [J]. Rock and Soil Mechanics, 2019, 40(S1): 91-98.
[12] ZHANG Zhi-guo, LI Sheng-nan, ZHANG Cheng-ping, WANG Zhi-wei, . Analysis of stratum deformation and lining response induced by shield construction considering influences of underground water level rise and fall [J]. Rock and Soil Mechanics, 2019, 40(S1): 281-296.
[13] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
[14] MO Zhen-ze, WANG Meng-shu, LI Hai-bo, QIAN Yong-jin, LUO Gen-dong, WANG Hui, . Laboratory investigation on pore water pressure variation caused by filter cake effect during slurry-EPB shield tunneling in silty sand layer [J]. Rock and Soil Mechanics, 2019, 40(6): 2257-2263.
[15] LIU Jia-shun, WANG Lai-gui, ZHANG Xiang-dong, LI Xue-bin, ZHANG Jian-jun, REN Kun, . Cyclic triaxial test on saturated silty clay under partial drainage condition with variable confining pressure [J]. Rock and Soil Mechanics, 2019, 40(4): 1413-1419.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[3] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[4] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[5] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[6] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[7] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[8] HU Hai-jun, JIANG Ming-jing, ZHAO Tao, PENG Jian-bing, LI Hong. Effects of specimen-preparing methods on tensile strength of remolded loess[J]. , 2009, 30(S2): 196 -199 .
[9] LI Min,CHAI Shou-xi,WANG Xiao-yan,WEI Li. Examination of reinforcement effect on basis of strength increment of reinforced saline soil with wheat straw and lime[J]. , 2011, 32(4): 1051 -1056 .
[10] XU Chong, LIU Bao-guo, LIU Kai-yun, GUO Jia-qi. Intelligent analysis model of landslide displacement time series based on coupling PSO-GPR[J]. , 2011, 32(6): 1669 -1675 .