Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (1): 233-244.doi: 10.16285/j.rsm.2020.0763

• Geotechnical Engineering • Previous Articles     Next Articles

Field measurement and numerical analysis for evaluating longitudinal settlement induced by shield tunneling parallel to building

DAI Xuan1, GUO Wang2, CHENG Xue-song3, HUO Hai-feng1, LIU Guo-guang1   

  1. 1. College of Airport Engineering, Civil Aviation University of China, Tianjin 300300, China; 2. Tianjin Municipal Engineering Design and Research Institute, Tianjin 300392, China; 3. MOE Key Laboratory of Coast Civil Structure Safety, Tianjin University, Tianjin 300072, China
  • Received:2020-06-05 Revised:2020-09-22 Online:2021-01-11 Published:2021-01-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51808548), the Fundamental Research Funds for the Central Universities (3122018C017) and the Tianjin Technical Expert Project (20YDTPJC00750).

Abstract: The transverse settlement induced by the construction of a parallel shield tunnel alongside the building has raised considerable attention, whereas few studies focus on the longitudinal settlement. Therefore, the spatial deformation of ground developed from this tunneling form is investigated. In this study, some field measurements from the shield tunnel section of Tianjin Metro Line 6 parallel to four similar masonry buildings in vicinity are analyzed first, and the deformation pattern is established. Then, a hardening soil model calibrated against field measurement, considering small strain stiffness, is implemented in a three-dimension finite element simulation to evaluate the longitudinal deflection of the buildings, the ground deformation, and the soil stress distribution. Additionally, the effect of building aspect ratio is discussed. The simulation results show that tunneling-induced sagging deformation develops along the longitudinal direction of the building, and the settlement at the middle of a longitudinal wall is twice of that at the corners. Therefore, the study of tunneling parallel to buildings cannot be simplified to a plane strain problem. The building construction and tunneling activity result in the soil above the tunnel crown experiencing a complicated stress history, which can be divided into six stages. In longitudinal direction, compared with the part below the building foundation corners, the soil in the middle initially behaves larger compressive deformation due to building construction, followed by greater unloading deformation caused by tunnel excavation. In addition, the longitudinal sagging is significantly reduced for the buildings with aspect ratio less than 2.

Key words: shield tunneling, parallel tunneling, building settlement, finite element method (FEM), HS-Small model

CLC Number: 

  • TU 470
[1] MO Zhen-ze, WANG Meng-shu, LI Hai-bo, QIAN Yong-jin, LUO Gen-dong, WANG Hui, . Laboratory investigation on pore water pressure variation caused by filter cake effect during slurry-EPB shield tunneling in silty sand layer [J]. Rock and Soil Mechanics, 2019, 40(6): 2257-2263.
[2] ZHU Ning , ZHOU Yang , LIU Wei, SHI Pei-xin, WU Ben,. Study of silty soil behavior disturbed for installation of diaphragm wall in Suzhou [J]. , 2018, 39(S1): 529-536.
[3] LIU Zhen-ping, DU Gen-ming, CAI Jie, ZHOU Fan, LIU Jian, BIAN Kang,. Seamless coupling method of 3DGIS combined with 3DFEM simulation based on MeshPy [J]. , 2018, 39(10): 3841-3852.
[4] HUANG Xiao-kang, LU Kun-lin, ZHU Da-yong,. Simulation test study of deformations of pipelines located at different geometric positions arising from shield tunneling [J]. , 2017, 38(S1): 123-130.
[5] HE Wei-jie, YANG Dong-ying, CUI Zhou-fei. Comparison of theoretical and numerical solution for vertical vibration of a pile considering transverse inertia effect [J]. , 2017, 38(9): 2757-2763.
[6] ZHANG Xiao-qing, ZHANG Meng-xi, LI Lin, LI Wu-xiang, WANG You-cheng,. Mechanism of approaching construction disturbance caused by multi-line overlapped shield tunnelling [J]. , 2017, 38(4): 1133-1140.
[7] ZHANG Qiong-fang, XIA Tang-dai, DING Zhi, HUANG Xiao-bin, LIN Cun-gang,. Effect of nearby undercrossing tunneling on the deformation of existing metro tunnel and construction control [J]. , 2016, 37(12): 3561-3568.
[8] CHEN Ren-peng , YIN Xin-sheng , TANG Lü-jun , CHEN Yun-min , . Centrifugal model tests of tunneling face failure under seepage flow [J]. , 2015, 36(S1): 225-229.
[9] BAI Xiao-yu ,ZHANG Ming-yi ,YUAN Hai-yang,. Deformation analysis for the end-suspended piles in the combined soil-rock foundation pits under moving loadings [J]. , 2015, 36(4): 1167-1173.
[10] LI Xue,ZHOU Shun-hua,WANG Pei-xin,LI Xiao-long. Study of distribution law of earth pressure acting on shield tunnel lining based on in-situ data [J]. , 2014, 35(S2): 453-459.
[11] ZHANG Dong-mei , ZONG Xiang , HUANG Hong-wei , . Longitudinal deformation of existing tunnel due to underlying shield tunneling [J]. , 2014, 35(9): 2659-2666.
[12] GUO Yi-bin ,ZHANG Li-ming ,ZHENG Gang ,YANG Zhen-dan,. Influence of shield tunneling on working performance of large interchange's super-long piles [J]. , 2014, 35(10): 2941-2948.
[13] WANG Wei-dong, WANG Hao-ran, XU Zhong-hua. Study of parameters of HS-Small model used in numerical analysis of excavations in Shanghai area [J]. , 2013, 34(6): 1766-1774.
[14] WEI Gang ,HONG Jie ,WEI Xin-jiang . Analysis of additional load on adjacent underground pipeline induced by double-o-tube shield tunneling [J]. , 2012, 33(6): 1735-1741.
[15] TENG Li1, 2,ZHANG Huan3. Meso-macro analysis of surface settlement characteristics during shield tunneling in sandy cobble ground [J]. , 2012, 33(4): 1141-1150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[3] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[4] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[5] LU Zheng, YAO Hai-lin, LUO Xing-wen, HU Meng-ling. 3D dynamic responses of layered ground under vehicle loads[J]. , 2009, 30(10): 2965 -2970 .
[6] LI Lei, ZHU Wei, LIN Cheng, T. OHKI. Study of wet and dry properties of solidified sludge[J]. , 2009, 30(10): 3001 -3004 .
[7] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[8] HUANG Ping-lu, CHEN Cong-xin, XIAO Guo-feng, LIN Jian. Study of rock movement caused by underground mining in mines with complicated geological conditions[J]. , 2009, 30(10): 3020 -3024 .
[9] LIU Zhen-ping, HE Huai-jian, LI Qiang, ZHU Fa-hua. Study of the technology of 3D modeling and visualization system based on Python[J]. , 2009, 30(10): 3037 -3042 .
[10] CHEN Song, XU Guang-li, CHEN Guo-jin3 WU Xue-ting. Research on engineering geology characteristics of soil in sliding zone of Huangtupo landslide in Three Gorges Reservoir area[J]. , 2009, 30(10): 3048 -3052 .