›› 2015, Vol. 36 ›› Issue (S1): 225-229.doi: 10.16285/j.rsm.2015.S1.038

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Centrifugal model tests of tunneling face failure under seepage flow

CHEN Ren-peng1, 2, YIN Xin-sheng1, 2, TANG LÜ-jun3, CHEN Yun-min1, 2   

  1. 1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China; 2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China; 3. Zhejiang Electric Power Design Institute, Hangzhou, Zhejiang 310012, China
  • Received:2015-03-07 Online:2015-07-11 Published:2018-06-14

Abstract: When the earth pressure balanced shield is tunneling in the stratum with a high water table (for example, a tunnel constructed below the river by the shield), the hydraulic head difference between the ground and the shield’s chamber can produce seepage force acting on the tunnel face. The seepage force can lead to the failure of the tunneling face, in order to investigate the failure of the tunneling face considering the seepage flow. A device for the centrifugal model tests is developed, including: rigid model container, tunnel model, loading system, water table control system and water storage tank. The size of the rigid model container is 1 000 mm in length, 450 mm in width and 1 000 mm in height. Due to the symmetry, the tunnel model is made from a D-shape steel tube. The diameter of the tunnel model D is 100 mm the tunnel face is a D-shape aluminium plate with the drainage holes. The drainage holes allow the seepage water to flow into the tunnel. Loading system consists of a hydraulic actuator, a cylindrical loading rod, a linear variable differential transformer (LVDT) and control software. The loading system is used to fulfill the tunnel face retreating. The water table control system consist a flow pump, some hoses, a metal pipe with some holes and a solenoid valve. The water table control system allows keeping an invariant water table and steady seepage during the tests. Water storage tank is used to store seepage water. A series of the model tests with different water tables are conducted. The depth between the crown of the tunnel model and the water table are 1D, 2D and 3D. The depth of the overburden is 1D. The silty sands are used in the tests. The sands are collected from the beach on Qiantang River. A pressure cell is placed between the tunnel face and the loading rod. It is used to measure the support pressure. The armature of LVDT is connected to the loading rod. The LVDT is used to measure the horizontal displacement of the tunnel face. The results show that the effective support pressure decreased when the face plate is retreating. The effective support pressure increased slowly after reaching the minimal value. In the limit state, effective support pressure increased linearly with the hydraulic head .

Key words: shield tunneling, face stability, steady state seepage, centrifuge, effective support

CLC Number: 

  • U 452
[1] YIN Xin-sheng, SHU Ying, LIANG Lu-ju, ZHANG Shi-min, . Stability analysis of shield excavation surface in saturated silt strata considering seepage [J]. Rock and Soil Mechanics, 2023, 44(7): 2005-2016.
[2] PENG Wen-ming, ZHANG Xue-dong, XIA Yong, . Dynamic centrifugal model tests on earth rock dam resting on soft overburden [J]. Rock and Soil Mechanics, 2023, 44(6): 1771-1778.
[3] YAN Zhi-xiao, LI Yu-run, WANG Dong-sheng, WANG Yong-zhi, . Centrifugal experimental study on seismic response of bridge pile group foundation in overlaying water sandy field [J]. Rock and Soil Mechanics, 2023, 44(3): 861-872.
[4] HU Li-wen, HONG Yi, WANG De-yong, . Centrifuge modelling and numerical analysis on underwater two-way vacuum preloading [J]. Rock and Soil Mechanics, 2023, 44(10): 3059-3070.
[5] LIU Run, YIN Rui-long, LIANG Chao, CHEN Guang-si. Inner frictional resistance of super-large diameter steel pipe pile in clay [J]. Rock and Soil Mechanics, 2023, 44(1): 232-240.
[6] LUO Wei-ping, YUAN Da-jun, JIN Da-long, LU Ping, CHEN Jian, GUO Hai-peng, . Centrifugal model test on relationship between support pressure of shield tunnel face and ground deformation in water rich sand strata [J]. Rock and Soil Mechanics, 2022, 43(S2): 345-354.
[7] LI Chun-lin. Curved solid failure model and calculation method of supporting pressure for shield tunnel excavation face [J]. Rock and Soil Mechanics, 2022, 43(8): 2092-2102.
[8] WANG Hong-zhen, ZHANG Chun-sheng, HUANG Wei, GUO De-chang, JIANG Jian-qun, . Vibration characteristics of super large centrifuge foundation [J]. Rock and Soil Mechanics, 2022, 43(7): 1942-1950.
[9] YANG Hao, WEI Yu-feng, PEI Xiang-jun, ZHANG Yu-yang, . Centrifugal test study of fracture evolution characteristics of anti-dip rock slope with steep and gently dipping structural plane [J]. Rock and Soil Mechanics, 2022, 43(5): 1215-1225.
[10] JIN Da-long, YUAN Da-jun, . Face stability analysis of the slurry-type shield tunneling considering the dynamic filter cake [J]. Rock and Soil Mechanics, 2022, 43(11): 2952-2962.
[11] YUAN Shuai, FENG De-wang, ZHANG Sen-hao, XING Yun-peng, KE Zun-qi, . Stability analysis of shield tunnel face considering spatial variability of hydraulic parameters [J]. Rock and Soil Mechanics, 2022, 43(11): 3153-3162.
[12] GUO Ming-wei, MA Huan, YANG Zhong-ming, WANG Bin, DONG Xue-chao, WANG Shui-lin, . Settlement analysis of large open caisson foundation at construction stage of Changtai Yangtze River Bridge [J]. Rock and Soil Mechanics, 2021, 42(6): 1705-1712.
[13] WU Ben, LIU Wei, SHI Pei-xin, FU Chun-qing, . Two-dimensional spiral failure model of the heading face of shield tunneling [J]. Rock and Soil Mechanics, 2021, 42(3): 767-774.
[14] SHI Jiang-wei, FAN Yan-bo, PEI Wei-wei, CHEN Yong-hui, ZHANG Xian, . An investigation of deformation mechanisms of jointed pipelines due to underneath tunnel excavation [J]. Rock and Soil Mechanics, 2021, 42(1): 143-150.
[15] DAI Xuan, GUO Wang, CHENG Xue-song, HUO Hai-feng, LIU Guo-guang, . Field measurement and numerical analysis for evaluating longitudinal settlement induced by shield tunneling parallel to building [J]. Rock and Soil Mechanics, 2021, 42(1): 233-244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[6] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[7] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[8] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[9] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[10] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .