Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (5): 1215-1225.doi: 10.16285/j.rsm.2021.1508

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Centrifugal test study of fracture evolution characteristics of anti-dip rock slope with steep and gently dipping structural plane

YANG Hao1, WEI Yu-feng1, PEI Xiang-jun1, ZHANG Yu-yang1,2   

  1. 1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China; 2. Sichuan Earthquake Administration, Chengdu, Sichuan 610044, China
  • Received:2021-09-06 Revised:2021-12-20 Online:2022-05-11 Published:2022-05-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (42072303), and the National Key R & D Program of China (2017YFC1501000).

Abstract: In order to study the evolution characteristics of the fracture plane of the anti-dip rock slope with the steep and gently dipping structural plane under the condition of its own weight. Taking the toppling deformation form of right abutment of Miaowei Hydropower Station as the geological prototype, the centrifugal model test was carried out by presetting non-penetrating cracks of the rock strata in different parts of the slope body to simulate the evolution characteristics of the fracture surface of the anti-dip rock slope under the condition of its own weight. The researches have demonstrated that: (1) The failure of anti-dip rock slopes with steep and gently dipping structural planes are marked by the formation of fracture surfaces, which are divided into three stages: in the initial period (0–40g, g is the acceleration of gravity), it refers to the stage of partial fracturation which takes partial fracturation and stratum forwarding on the trailing edge as the major failure characteristics with less position changes in slope plane. In the middle period (40g–80g), it refers to the formation stage of major fracture plane which can be formed in the deep structural plane of slope through expansion and connection in a top-down approach. Position changes in slope nearly account for 3/4 of total position changes. In the later period (80g–120g), it refers to the formation stage of multi-stage fracture plane whose main formation feature is the stress redistribution of fracture strata within the slope. Position changes in slope basically remain unchanged. (2) The fracture of rock bridge between structural planes is transient, but the formation of fracture plane is a gradual development process which is mainly controlled by steep-inclined structural planes. The strain at the crevice of the main fracture plane is the greatest and the stress mode is the most complex. And the fracture strain at the secondary fracture plane takes the second place. Based on fracture mechanics, the fracture criteria of the rock compression-shear and unbalanced force formula for rock stratum have been simplified. It is revealed that the unbalanced force of the rock stratum at the main fracture surface decreases from 1/3 of the slope height to the bottom and top of the slope. The formation of fracture surface is mainly affected by the ratio of the intensity factor of shear stress to normal stress, the length of rock structure plane and the crack rate.

Key words: anti-dip stratigraphic slope, centrifuge test, crack propagation, fracture of rock bridge, fracture plane formation

CLC Number: 

  • TU 457
[1] WU Dong-yang, YU Li-yuan, SU Hai-jian, WU Jiang-yu, LIU Ri-cheng, ZHOU Jian. Experimental study and PFC3D simulation on crack propagation of fractured rock-like specimens with bolts under uniaxial compression [J]. Rock and Soil Mechanics, 2021, 42(6): 1681-1692.
[2] YANG Liang, YANG Yong-tao, ZHENG Hong. The phase field numerical manifold method for crack propagation in rock [J]. Rock and Soil Mechanics, 2021, 42(12): 3419-3427.
[3] PAN Rui, CHENG Hua, WANG Lei, WANG Feng-yun, CAI Yi, CAO Guang-yong, ZHANG Peng, ZHANG Hao-jie, . Experimental study on bearing characteristics of bolt-grouting support in shallow fractured surrounding rock of roadway [J]. Rock and Soil Mechanics, 2020, 41(6): 1887-1898.
[4] AI Di-hao, LI Cheng-wu, ZHAO Yue-chao, LI Guang-yao, . Investigation on micro-seismic, electromagnetic radiation and crack propagation characteristics of coal under static loading [J]. Rock and Soil Mechanics, 2020, 41(6): 2043-2051.
[5] ZHANG Xue-dong, CAI Hong, WEI Ying-qi, ZHANG Zi-tao, LIANG Jian-hui, HU Jing. Characterization of the seismic behavior of tailings reservoir founded on soft soil using dynamic centrifuge tests [J]. Rock and Soil Mechanics, 2020, 41(4): 1287-1294.
[6] JIN Ai-bing, WANG Shu-liang, WANG Ben-xin, SUN Hao, CHEN Shuai-jun, ZHU Dong-feng, . Fracture mechanism of specimens with 3D printing cross joint based on DIC technology [J]. Rock and Soil Mechanics, 2020, 41(12): 3862-3872.
[7] LI Xiao-zhao, BAN Li-ren, QI Cheng-zhi, . Study on the mechanical model of macro-mecro creep under high seepage pressure in brittle rocks [J]. Rock and Soil Mechanics, 2020, 41(12): 3987-3995.
[8] JIN Ai-bing, WANG Shu-liang, WANG Ben-xin, SUN Hao, ZHAO Yi-qing, . Study on the fracture mechanism of 3D-printed-joint specimens based on DIC technology [J]. Rock and Soil Mechanics, 2020, 41(10): 3214-3224.
[9] ZHANG Guo-kai, LI Hai-bo, WANG Ming-yang, LI Xiao-feng, . Crack propagation characteristics in rocks containing single fissure based on acoustic testing and camera technique [J]. Rock and Soil Mechanics, 2019, 40(S1): 63-72.
[10] ZHANG Chuan-qing, LIU Zhen-jiang, ZHANG Chun-sheng, ZHOU Hui, GAO Yang, HOU Jing, . Experimental study on rupture evolution and failure characteristics of aphanitic basalt [J]. Rock and Soil Mechanics, 2019, 40(7): 2487-2496.
[11] ZHANG Yu-bin, HUANG Dan. State-based peridynamic study on the hydraulic fracture of shale [J]. Rock and Soil Mechanics, 2019, 40(7): 2873-2881.
[12] WANG Hai-jun, YU Shu-yang, REN Ran, TANG Lei, LI Xin-yun, JIA Yu, . Study on failure of brittle solids with circular hole and internal crack based on 3D-ILC [J]. Rock and Soil Mechanics, 2019, 40(6): 2200-2212.
[13] YANG Shi-kou, ZHANG Ji-xun, REN Xu-hua, . Study of contact cracks based on improved numerical manifold method [J]. Rock and Soil Mechanics, 2019, 40(5): 2016-2021.
[14] CONG Yi, CONG Yu, ZHANG Li-ming, JIA Le-xin, WANG Zai-quan, . 3D particle flow simulation of loading-unloading failure process of marble [J]. Rock and Soil Mechanics, 2019, 40(3): 1179-1186.
[15] LI Zheng, GUO De-ping, ZHOU Xiao-ping, WANG Yun-teng, . Numerical simulation of crack propagation and coalescence using peridynamics [J]. Rock and Soil Mechanics, 2019, 40(12): 4711-4721.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .