Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (6): 1705-1712.doi: 10.16285/j.rsm.2020.1606

• Geotechnical Engineering • Previous Articles     Next Articles

Settlement analysis of large open caisson foundation at construction stage of Changtai Yangtze River Bridge

GUO Ming-wei1, MA Huan1, 2, YANG Zhong-ming3, WANG Bin4, DONG Xue-chao1, 5, WANG Shui-lin1   

  1. 1. State Key Laboratory of Geotechnical Mechanics and Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 3. Jiangsu Provincial Transportation Engineering Construction Bureau, Nanjing, Jiangsu 210004, China; 4. Central South Exploration & Foundation Engineering Co., Ltd., Wuhan, Hubei 430081, China; 5. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-10-29 Revised:2021-03-04 Online:2021-06-11 Published:2021-06-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51674239) and the Scientific and Technological Key Projects in Transportation Industry 2019(2019-MS1-011).

Abstract: With the increasing size of open caisson foundation in large bridge project in China, the overall settlement of large open caisson foundation is vital to the shape control of high-speed railway bridge. In this paper, by taking the open caisson foundation of long-span and rail-cum-road Changtai Yangtze River Bridge as the engineering background, the overall settlement of the sinking well foundation during the Changtai Yangtze River Bridge construction stage is comprehensively analyzed. In addition, based on the distribution of the stratum and the size of open caisson foundation, the corresponding centrifuge model tests are conducted. According the results of tests, it can be seen that the overall settlement of open caisson foundation can be divided into three stages: slow growth, sharp deformation and leveling off. In addition, the overall settlement calculated by the layered sum method with actual compression modulus of the soil is in good agreement with that of the centrifugal model test and the overall settlement of the open caisson foundation is about 220 mm when the construction stage is finished. This study provides an important reference for the design of open caisson foundation of Changtai Yangtze River Bridge and has referential value to similar open caisson foundation engineering.

Key words: layerwise summation method, compression modulus, centrifuge model test, settlement

CLC Number: 

  • TU445
[1] ZHANG Jin-xun, SONG Yong-wei, YANG Hao, ZHANG Lei, QI Yi, . Influences of load and fine soil content on frost heave and thawing settlement properties of sandy gravel [J]. Rock and Soil Mechanics, 2022, 43(S1): 213-221.
[2] ZHANG Zhi-wei, LI Zhong-chao, LIANG Rong-zhu, YU Dong-dong, LIANG Dong-rui, WANG Li-xiang, WU Wen-bing. Analysis of upheaval and settlement deformation of ground surface caused by excavation of rectangular pipe jacking in soft soil stratum [J]. Rock and Soil Mechanics, 2022, 43(S1): 419-430.
[3] DAI Tian-yi, XIAO Shi-guo, . Settlement calculation method of rigid pile composite foundation considering interaction between supported embankment and improved zone [J]. Rock and Soil Mechanics, 2022, 43(S1): 479-489.
[4] LI Peng-fei, GOU Bao-liang, ZHU Meng, GAO Xiao-jing, GUO Cai-xia, . A calculation method of the time-dependent behavior for tunneling-induced ground settlement based on virtual image technique [J]. Rock and Soil Mechanics, 2022, 43(3): 799-807.
[5] JIN Jia-xu, DING Qian-shen, LIU Lei, WEI Wei, ZHANG Xiong, ZHANG Chai, . Effect of aerobic degradation on landfill settlement and development of a constitutive model [J]. Rock and Soil Mechanics, 2022, 43(2): 416-422.
[6] ZHAO Liu-yuan, SHAN Zhi-gang, WANG Ming-yuan, . Analysis of liquefaction characteristics of horizontal site of offshore wind farm under earthquake in the South Yellow Sea [J]. Rock and Soil Mechanics, 2022, 43(1): 169-180.
[7] JIANG Shuai, ZHU Yong, LI Qing, ZHOU Hui, TU Hong-liang, YANG Fan-jie, . Dynamic prediction and influence factors analysis of ground surface settlement during tunnel excavation [J]. Rock and Soil Mechanics, 2022, 43(1): 195-204.
[8] LU Tai-shan, LIU Song-yu, CAI Guo-jun, WU Kai, XIA Wen-jun, . Study on the disturbance and recompression settlement of soft soil induced by foundation excavation [J]. Rock and Soil Mechanics, 2021, 42(2): 565-573.
[9] SUN Hong-lei, LU Yi, PAN Xiao-dong, SHI Li, CAI Yuan-qiang, . The effect of initial water content on the consolidation of dredged slurry under vacuum preloading [J]. Rock and Soil Mechanics, 2021, 42(11): 3029-3040.
[10] DAI Xuan, GUO Wang, CHENG Xue-song, HUO Hai-feng, LIU Guo-guang, . Field measurement and numerical analysis for evaluating longitudinal settlement induced by shield tunneling parallel to building [J]. Rock and Soil Mechanics, 2021, 42(1): 233-244.
[11] CHEN Sheng-yuan, YE Hua-yang, ZHANG Wei-feng, WEI Wei, . Settlement analysis of flexible pile composite foundation under embankment load [J]. Rock and Soil Mechanics, 2020, 41(9): 3077-3086.
[12] HOU Gong-yu, , LI Zi-xiang, HU Tao, ZHOU Tian-ci, XIAO Hai-lin, WANG Kai-di, HU Jin-xin, ZHU Jing. Study of tunnel settlement monitoring based on distributed optic fiber strain sensing technology [J]. Rock and Soil Mechanics, 2020, 41(9): 3148-3158.
[13] WAN Zhi-hui, DAI Guo-liang, GAO Lu-chao, GONG Wei-ming, . A practical method of calculation of bearing capacity and settlement of large-diameter post-grouting piles [J]. Rock and Soil Mechanics, 2020, 41(8): 2746-2755.
[14] ZHENG Li-fu, GAO Yong-tao, ZHOU Yu, TIAN Shu-guang, . Research on surface frost heave and thaw settlement law and optimization of frozen wall thickness in shallow tunnel using freezing method [J]. Rock and Soil Mechanics, 2020, 41(6): 2110-2121.
[15] ZHOU En-quan, ZONG Zhi-xin, WANG Qiong, LU Jian-fei, ZUO Xi. Dynamic characteristics of pipe buried in rubber-silt lightweight mixtures [J]. Rock and Soil Mechanics, 2020, 41(4): 1388-1395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Hong-fei, CHENG Xiao-jun, GAO Pan, Zhou Xin-xin. Research on forward simulation of tunnel lining cavity GPR images[J]. , 2009, 30(9): 2810 -2814 .
[2] FAN Qing-lai, LUAN Mao-tian, LIU Zhan-ge. Numerical simulation of penetration resistance of T-bar penetrometer in soft clay[J]. , 2009, 30(9): 2850 -2854 .
[3] ZHANG An-kang,CHEN Shi-hai,DU Rong-qiang,WEI Hai-xia. Energy-based elastoplastic damage model for rock materials with strain rate effects[J]. , 2010, 31(S1): 207 -210 .
[4] WANG Xiao-jun, QU Yao-hui, WEI Yong-liang, YANG Yin-hai, DA Yi-zheng. Settlement observation and prediction research of test embankment in collapsible loess area along Zhengzhou-Xi'an passenger dedicated line[J]. , 2010, 31(S1): 220 -231 .
[5] CHEN Yu,CAO Ping,PU Cheng-zhi,LIU Ye-ke,LI Na. Experimental study of effect of water-rock interaction on micto-topography of rock surface[J]. , 2010, 31(11): 3452 -3458 .
[6] ZHAO Yan-xi, XU Wei-ya. Risk assessment of TBM construction for tunnels based on AHP and fuzzy synthetic evaluation[J]. , 2009, 30(3): 793 -798 .
[7] ZHANG Qi-yi, LUAN Mao-tian. Ultimate bearing capacity of strip footings on inhomogeneous soil foundation under combined loading[J]. , 2009, 30(5): 1281 -1286 .
[8] WANG Jun-qing, LI Jing, LI Qi, CHEN Li. Analysis of influence factors of high slope stability of loess: Taking the Baojixia Water Division Project for example[J]. , 2009, 30(7): 2114 -2118 .
[9] CHANG Lin-yue,WANG Jin-chang,ZHU Xiang-rong. An analytical solution of 1-D finite strain consolidation of saturated soft clay under multistep linear loading[J]. , 2009, 30(8): 2343 -2347 .
[10] GONG Yan-feng,ZHANG Jun-ru. Study of design methodology and application of tunnel single layer lining[J]. , 2011, 32(4): 1062 -1068 .