Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (S1): 479-489.doi: 10.16285/j.rsm.2020.1479

• Geotechnical Engineering • Previous Articles     Next Articles

Settlement calculation method of rigid pile composite foundation considering interaction between supported embankment and improved zone

DAI Tian-yi1, XIAO Shi-guo2   

  1. 1. Department of Geological Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • Received:2020-09-30 Revised:2021-03-09 Online:2022-06-30 Published:2022-07-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51578466).

Abstract: In order to accurately calculate the settlement of rigid pile composite foundation under embankment load, an analysis method is provided based on vertically linear development model of friction coefficient between the inner and exterior soil columns in the embankment supported by the composite foundation, as well as distribution mode of pile-soil relative displacement and development coefficient of skin friction on the pile. Thus, considering soil arching effect in the embankment and coupling characteristics of vertical load transfer between the embankment and improved zone, pile-soil stress ratio, differential settlement between pile and soil, and settlement of the improved zone are all derived by the principle of static equilibrium of a microelement in the embankment-foundation system. The proposed method can quantitatively reflect the dominant influence factors, such as height of embankment, internal friction angle and cohesion of the filling and soft foundation soil, pile length, pile diameter and pile spacing. Analysis results of examples show that relative error between the calculated and measured values is less than 15%. Pile length has non-linear effect on the settlement of the improved zone, while area replacement ratio, cohesion and internal friction angle of the foundation soil have linearly negative effect on the settlement. Moreover, the settlement is more sensitive to internal friction angle than cohesion.

Key words: embankment, rigid piles, composite foundation, soil arching effect, settlement of improved zone

CLC Number: 

  • TU473
[1] XU Fang, ZHANG Qi-shu, LENG Wu-ming, DENG Zhi-long, DONG Jun-li, LIU Si-hui, . Stability analysis of a newly developed prestressed embankment based on the additional stress propagation effect [J]. Rock and Soil Mechanics, 2022, 43(S1): 431-442.
[2] LI Chun-lin. Curved solid failure model and calculation method of supporting pressure for shield tunnel excavation face [J]. Rock and Soil Mechanics, 2022, 43(8): 2092-2102.
[3] DENG You-sheng, LI Ling-tao, PENG Cheng-pu, LI Long, LIU Jun-cong, FU Yun-bo. Model tests on geogrid reinforced pile supported embankment under static and dynamic loads [J]. Rock and Soil Mechanics, 2022, 43(8): 2149-2156.
[4] WANG Xu-chao, ZHANG Sha-sha, ZHAO Kai-xuan, . Salt expansion characteristics and analysis model of coarse-grained sulfate saline soil embankment fill material with increasing fines content [J]. Rock and Soil Mechanics, 2022, 43(8): 2191-2202.
[5] LU Meng-meng, SHAN Jie, LI Hong-jun, LI Chuan-xun, . Theoretical investigation of the consolidation for composite ground with profiled sectional composite piles based on the equivalent ring model [J]. Rock and Soil Mechanics, 2022, 43(6): 1513-1522.
[6] YANG Tao, JI Ying-zhu, . Analytical solution for consolidation of composite foundation with long vertical drains and short impervious columns under time-dependent loading [J]. Rock and Soil Mechanics, 2022, 43(5): 1187-1196.
[7] NIU Ting-ting, SUN Guang-chao, . Dynamic response analysis of X-pile-net composite embankment in high-speed railway [J]. Rock and Soil Mechanics, 2021, 42(5): 1266-1280.
[8] ZHU Sheng, ZHANG Yuan, JIALIBIEKE Ahalibieke, YU Jian-qing, HE Zhao-sheng, . Joint inversion method of instantaneous and creep parameters of rockfill dam based on incremental analysis [J]. Rock and Soil Mechanics, 2021, 42(5): 1453-1461.
[9] WANG Jia-hui, RAO Xi-bao, JIANG Ji-wei, YAO Jin-song, XIONG Shi-hu, LU Yi-wei, LI Hao-min, . Model experimental study of the shear mechanism of vibroflotation stone column composite foundation [J]. Rock and Soil Mechanics, 2021, 42(4): 1095-1103.
[10] CUI Peng-bo, ZHU Yong-quan, LIU Yong, ZHU Zheng-guo, PAN Ying-dong, . Model test and particle flow numerical simulation of soil arch effect for unsaturated sandy soil tunnel [J]. Rock and Soil Mechanics, 2021, 42(12): 3451-3466.
[11] ZHANG Ling, OU Qiang, ZHAO Ming-hua, DING Xuan-ming, LIU Jian-fei, . Numerical analysis on dynamic response characteristics of geosynthetic reinforced embankment under moving load [J]. Rock and Soil Mechanics, 2021, 42(10): 2865-2874.
[12] BAO Ning, WEI Jing, CHEN Jian-feng. Three dimensional discrete element analysis of soil arching in piled embankment [J]. Rock and Soil Mechanics, 2020, 41(S1): 347-354.
[13] CHEN Sheng-yuan, YE Hua-yang, ZHANG Wei-feng, WEI Wei, . Settlement analysis of flexible pile composite foundation under embankment load [J]. Rock and Soil Mechanics, 2020, 41(9): 3077-3086.
[14] ZHUANG Yan, LI Shao-bang, CUI Xiao-yan, DONG Xiao-qiang, WANG Kang-yu, . Investigation on dynamic response of subgrade and soil arching effect in piled embankment under high-speed railway loading [J]. Rock and Soil Mechanics, 2020, 41(9): 3119-3130.
[15] ZHANG Zhen, ZHANG Zhao, YE Guan-bao, WANG Meng, XIAO Yan, CHENG Yi, . Progressive failure mechanism of stiffened deep mixed column-supported embankment [J]. Rock and Soil Mechanics, 2020, 41(6): 2122-2131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .