Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (4): 1095-1103.doi: 10.16285/j.rsm.2020.1214

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Model experimental study of the shear mechanism of vibroflotation stone column composite foundation

WANG Jia-hui1, RAO Xi-bao1, JIANG Ji-wei1, YAO Jin-song2, XIONG Shi-hu1, LU Yi-wei1, LI Hao-min1   

  1. 1. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Yangtze River Scientific Research Institute, Wuhan, Hubei 430010, China; 2. Changjiang Institute of Survey Planning Design and Research, Wuhan, Hubei 430010, China
  • Received:2020-08-16 Revised:2020-09-26 Online:2021-04-12 Published:2021-04-26
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2017YFC0405001), the National Natural Science Foundation of China (51979009, 52008032) and the Basic Scientific Research Operating Expenses of Central Research Institutes of China (CKSF2019191/YT)。

Abstract: To study the shear deformation mechanism and strength characteristics of vibroflotation crushed stone column composite foundation in sandy silty soil, two model tests of crushed stone pile composite foundation with different displacement rates of pile were carried out by using large stacking ring shear apparatus. The relationship between shear stress and shear displacement, deformation of composite foundation under different stress states are systematic analyzed. The test results show that: 1) The sandy silty composite foundation has a feature of elastoplastic object and the stress level S=0.5 can be used as the elastoplastic object’s dividing line roughly. 2) In the process of large deformation destruction of composite foundation, the stone columns and soil have a good deformation consistency, meanwhile, the shear deformation is inhibited with the increase of displacement rate of pile. 3) At present, a few specifications in China suggest that the number of stress ratio of pile with soil is 1 for the shear strength calculation of composite foundation, which means that only pile area replacement is considered. As a result, the calculation results of shear strength are close under different pile replacement rates. The permutation rate of 22.7% has a 1.32° gap compare with 40.3% while the pile replacement rate of 22.7% has a 3.65° gap compare with 40.3% in the model test. It indicates that the reinforcement mechanism of stone columns on composite foundation should not be limited to the factor of displacement rate, the change of drainage effectiveness of composite foundation factor should also be considered.

Key words: stone column, composite foundation, shear failure, shear strength

CLC Number: 

  • TU 470
[1] XIA Xin, JIANG Yuan-jun, SU Li-jun, MEHTAB Alam, LI Jia-jia, . Estimation model of limit values of shear strength of root-bearing soil based on interface bonding [J]. Rock and Soil Mechanics, 2021, 42(8): 2173-2184.
[2] FAN Xiang, DENG Zhi-ying, CUI Zhi-meng, HE Zhong-ming, LIN Hang, . A new peak shear strength model for soft-hard joint [J]. Rock and Soil Mechanics, 2021, 42(7): 1861-1870.
[3] WANG Bin, HAN You-ming, ZHOU Xin, CHEN Cheng, ZHANG Xian-wei, GUI Lei, . In-situ test of shear modulus decay characteristics of lacustrine clay layer in Taihu Lake [J]. Rock and Soil Mechanics, 2021, 42(7): 2031-2040.
[4] YAN Qing, ZHAO Jun-hai, ZHANG Chang-guang. A new solution to the ultimate bearing capacity of reinforced foundation near slope based on the unified strength theory [J]. Rock and Soil Mechanics, 2021, 42(6): 1587-1600.
[5] YANG Ai-wu, YANG Shao-peng, LANG Rui-qing, CHEN Zi-he, . Three-dimensional mechanical properties of light solidified saline soil [J]. Rock and Soil Mechanics, 2021, 42(3): 593-600.
[6] LU Feng, QIU Wen-ge, . A multiparameter non-proportional shear strength reduction method for slope stability analysis based on energy evolution theory [J]. Rock and Soil Mechanics, 2021, 42(2): 547-557.
[7] ZHAN Liang-tong, SUN Qian-qian, GUO Xiao-gang, CHEN Rui, CHEN Yun-min, . Estimation of undrained shear strength of completely decomposed granite waste during rapid landfilling [J]. Rock and Soil Mechanics, 2021, 42(1): 50-58.
[8] HUANG Chao-xuan, YUAN Wen-xi, HU Guo-jie, . An estimation method of horizontal bearing capacity of piles after pre-consolidation treatment for layered soft foundation [J]. Rock and Soil Mechanics, 2021, 42(1): 113-124.
[9] LIU Jie, YANG Yu-hua, YAO Hai-lin, LU Zheng, YUE Chan, . Experimental study on treatment of dispersive clay based on different modification methods [J]. Rock and Soil Mechanics, 2020, 41(S1): 163-170.
[10] ZOU Xian-jian, WANG Yi-teng , WANG Chuan-ying, . Three-dimensional morphological feature of rock structural surfaces and dominant anti-slip direction using the borehole images [J]. Rock and Soil Mechanics, 2020, 41(S1): 290-298.
[11] CHEN Sheng-yuan, YE Hua-yang, ZHANG Wei-feng, WEI Wei, . Settlement analysis of flexible pile composite foundation under embankment load [J]. Rock and Soil Mechanics, 2020, 41(9): 3077-3086.
[12] ZHANG Tian-long, ZENG Peng, LI Tian-bin, SUN Xiao-ping, . System reliability analyses of slopes based on active-learning radial basis function [J]. Rock and Soil Mechanics, 2020, 41(9): 3098-3108.
[13] CHEN Hao, HU Xiao-rong. Triple-shear failure criteria and experimental verification for unsaturated soils [J]. Rock and Soil Mechanics, 2020, 41(7): 2380-2388.
[14] YU Lu, YANG Qing, YANG Gang, ZHANG Jin-li. Analysis of the resistance of elliptical tip of torpedo anchor by plastic limit analysis [J]. Rock and Soil Mechanics, 2020, 41(6): 1953-1962.
[15] LIU Jian-min, QIU Yue, GUO Ting-ting, SONG Wen-zhi, GU Chuan, . Comparative experimental study on static shear strength and postcyclic strength of saturated silty clay [J]. Rock and Soil Mechanics, 2020, 41(3): 773-780.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[2] ZHANG Yi-hu, ZHOU Huo-ming, WU Ai-qing. Post processing of discontinuity network modeling result[J]. , 2009, 30(9): 2855 -2861 .
[3] YANG Guang, SUN Xun, YU Yu-zhen, ZHANG Bing-yin. Experimental study of mechanical behavior of a coarse-grained material under various stress paths[J]. , 2010, 31(4): 1118 -1122 .
[4] WEN Shi-qiang, CHEN Yu-min, DING Xuan-ming, ZUO Wei-long. Application of grouted gravel pile in soft subgrade improvement of expressway[J]. , 2010, 31(5): 1559 -1563 .
[5] YANG Tian-hong, CHEN Shi-kuo, ZHU Wan-cheng, LIU Hong-lei. Coupled model of gas-solid in coal seams based on dynamic process of pressure relief and gas drainage[J]. , 2010, 31(7): 2247 -2252 .
[6] HU Xiu-hong,WU Fa-quan. Research on two-parameter negative exponential distribution of discontinuity spacings in rock mass[J]. , 2009, 30(8): 2353 -2358 .
[7] LI Wei-chao, XIONG Ju-hua, YANG Min. Improved method for calculating anti-overturning safety factor of cement-soil retaining wall in layered soil[J]. , 2011, 32(8): 2435 -2440 .
[8] ZHANG Gui-min , LI Yin-ping , SHI Xi-lin , YANG Chun-he , WANG Li-juan. Research on a model material preparation method for alternate layered rock mass and preliminary experiment[J]. , 2011, 32(S2): 284 -289 .
[9] WANG Wei LI Xiao-chun LI Qiang SHI Lu WANG Ying BAI Bing. Small size in-situ transient pulse permeability measurement system and its experimental research[J]. , 2011, 32(10): 3185 -3189 .
[10] HU Cun, LIU Hai-xiao, HUANG Wei. Damage-dependent bounding surface model for cyclic degradation of saturated clay[J]. , 2012, 33(2): 459 -466 .