Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (9): 3098-3108.doi: 10.16285/j.rsm.2019.1695

• Geotechnical Engineering • Previous Articles     Next Articles

System reliability analyses of slopes based on active-learning radial basis function

ZHANG Tian-long1, 2, ZENG Peng1, 2, LI Tian-bin1, 2, SUN Xiao-ping1, 2   

  1. 1. College of Environmental and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China; 2. State Key Laboratory of Geo-hazard Prevention and Geo-environment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China
  • Received:2019-10-02 Revised:2020-04-26 Online:2020-09-11 Published:2020-10-21
  • Supported by:
    This word was supported by the National Natural Science Foundation for Young Scientists of China(41602304), the National Natural Science Foundation of China(41977224) and the Sichuan Science and Technology Program(2019YJ0405).

Abstract: The strength reduction method (SRM) has many advantages compared with the limit equilibrium method (LEM) in computing the safety factor of slopes, but the high computational cost, to some extent, limits the application of SRM in system reliability analyses of slopes. To effectively reduce the number of numerical analyses required for reliability analyses to alleviate the computation work when employing SRM, an efficient analysis method based on active-learning radial basis function (ARBF) surrogate model is introduced. This model uses the active-learning function to select trained samples near the limit state surface to update the surrogate model, which accelerates the convergence speed of the training process. With the linear kernel-based radial basis function, the optimization procedure of model parameters is simplified, by which a concise and stable surrogate model can be established. Moreover, an initial sampling strategy considering the characteristics of soil slopes is proposed to fully take advantage of active-learning process. Once a stable surrogate model is established, Monte Carlo simulation (MCS) is used to calculate the probability of system failure. As a comparison, two conventional reliability methods: active-learning Kriging (AK) model and the quadratic response surface method (QRMS), together with two typical soil slope cases, are tested to illustrate the computational efficiency and model stability of the introduced ARBF.

Key words: slope, system reliability, shear strength reduction method, active-learning surrogate models, radial basis function

CLC Number: 

  • TU 457
[1] XIE Ji-ren, QIAO Shi-fan, YU Peng-kun, UCHIMURA Taro, WANG Gong-hui, JIANG Yao, FANG Zheng, TIAN Jing-li. Surface tilt deformation of soil landslides based on laboratory and field tests [J]. Rock and Soil Mechanics, 2021, 42(3): 681-690.
[2] ZHANG Rui-huan, YE Shuai-hua, TAO Hui. Stability analysis of multistage homogeneous loess slopes by improved limit equilibrium method [J]. Rock and Soil Mechanics, 2021, 42(3): 813-825.
[3] ZHENG Hong, ZHANG Tan, WANG Qiu-sheng. One package of schemes for some difficult issues in finite element plasticity analysis [J]. Rock and Soil Mechanics, 2021, 42(2): 301-314.
[4] LAI Tian-wen, LEI Hao, WU Zhi-xin, WU Hong-gang, . Shaking table test study on basalt fiber reinforced plastics in high slope protection [J]. Rock and Soil Mechanics, 2021, 42(2): 390-400.
[5] AN Ning, YAN Chang-gen, WANG Ya-chong, LAN Heng-xing, BAO Han, XU Jiang-bo, SHI Yu-ling, SUN Wei-feng, . Experimental study on anti-erosion performance of polypropylene fiber-reinforced loess [J]. Rock and Soil Mechanics, 2021, 42(2): 501-510.
[6] JIN Ai-bing, CHEN Shuai-jun, ZHAO An-yu, SUN Hao, ZHANG Yu-shuai, . Numerical simulation of open-pit mine slope based on unmanned aerial vehicle photogrammetry [J]. Rock and Soil Mechanics, 2021, 42(1): 255-264.
[7] LI Fu-xiu, WU Zhi-jian, YAN Wu-jian, ZHAO Duo-yin, . Research on dynamic response characteristics of loess tableland slopes based on shaking table test [J]. Rock and Soil Mechanics, 2020, 41(9): 2880-2890.
[8] LI Ying-jun, XIA Yuan-you, WANG Zhi-de. Post-seismic displacement analysis of soil-nailed slope under earthquake [J]. Rock and Soil Mechanics, 2020, 41(9): 3013-3021.
[9] JIANG Shui-hua, LIU Yuan, ZHANG Hao-long, HUANG Fa-ming, HUANG Jin-song, . Quantitatively evaluating the effects of prior probability distribution and likelihood function models on slope reliability assessment [J]. Rock and Soil Mechanics, 2020, 41(9): 3087-3097.
[10] PAN Yong-liang, JIAN Wen-xing, LI Lin-jun, LIN Yu-qiu, TIAN Peng-fei. A study on the rainfall infiltration of granite residual soil slope with an improved Green-Ampt model [J]. Rock and Soil Mechanics, 2020, 41(8): 2685-2692.
[11] AN Cai-long, LIANG Ye, WANG Liang-qing, DENG Shan, SUN Zi-hao, FAN Bin-qiang, ZHENG Luo-bin. Three-dimensional optimization design for the direction angle of anchor cable reinforcement in wedge rock slope [J]. Rock and Soil Mechanics, 2020, 41(8): 2765-2772.
[12] LI Jian-fei, SU Yang, SUN Zhi-bin, ZHAO Chen, . 3D seismic displacement analysis method of stepped slopes reinforced with piles based on Newmark principle [J]. Rock and Soil Mechanics, 2020, 41(8): 2785-2795.
[13] XIAO Shi-guo, LIU Hang, YU Xin-zuo. Analysis method of seismic overall stability of soil slopes retained by gravity walls anchored horizontally with flexible reinforcements [J]. Rock and Soil Mechanics, 2020, 41(6): 1836-1844.
[14] RONG Chi, CHEN Wei-zhong, YUAN Jing-qiang, ZHANG Zheng, ZHANG Yi, ZHANG Qing-yan, LIU Qi, . Study on new sodium silicate-ester grouting material and its properties of grouted-sand [J]. Rock and Soil Mechanics, 2020, 41(6): 2034-2042.
[15] REN Yang, LI Tian-bin, LAI Lin. Centrifugal shaking table test on dynamic response characteristics of tunnel entrance slope in strong earthquake area [J]. Rock and Soil Mechanics, 2020, 41(5): 1605-1612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Qiong, TANG Hui-ming, WANG Liang-qing, LIN Zhi-hong. Analytic solutions for phreatic line in reservoir slope with inclined impervious bed under rainfall and reservoir water level fluctuation[J]. , 2009, 30(10): 3025 -3031 .
[2] LIU Zhen-ping, HE Huai-jian, LI Qiang, ZHU Fa-hua. Study of the technology of 3D modeling and visualization system based on Python[J]. , 2009, 30(10): 3037 -3042 .
[3] WEI Xing,HUANG Mao-song. A simple method to predict traffic-load-induced permanent settlement of road on soft subsoil[J]. , 2009, 30(11): 3342 -3346 .
[4] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[5] TAN Xiao-hui,WANG Jian-guo,FENG Min-jie,BI Wei-hua. Reliability analysis of soil nailed structures using spreadsheet method[J]. , 2009, 30(11): 3447 -3452 .
[6] JIA Chao, ZHANG Qiang-yong, ZHANG Ning, LIU Jian, LI Shu-cai, YANG Chu. Preliminary research of risk classification for underground salt rock gas storage[J]. , 2009, 30(12): 3621 -3626 .
[7] MAO Chang-xi, DUAN Xiang-bao, WU Liang-ji. Study of critical gradient of piping for various grain sizes in sandy gravels[J]. , 2009, 30(12): 3705 -3709 .
[8] DONG Cheng, ZHENG Ying-ren, CHEN Xin-ying, TANG Xiao-song. Research on composite support pattern of soil nails and prestressed anchors in deep foundation pits[J]. , 2009, 30(12): 3793 -3796 .
[9] HE Fa-guo, CHEN Wen-wu, HAN Wen-feng, ZHANG Jing-ke. Correlation of microstructure indices and performance of sand solidified with polymer material SH[J]. , 2009, 30(12): 3803 -3807 .
[10] WU Jian,XIE Xin-yu,ZHU Xiang-rong. Study of properties of 1-D complex nonlinear consolidation of saturated soils[J]. , 2010, 31(1): 81 -86 .