Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (10): 2865-2874.doi: 10.16285/j.rsm.2021.0352

• Numerical Analysis • Previous Articles     Next Articles

Numerical analysis on dynamic response characteristics of geosynthetic reinforced embankment under moving load

ZHANG Ling1, 2, OU Qiang1, 2, 3, 4, ZHAO Ming-hua1, 2, DING Xuan-ming3, 4, LIU Jian-fei5   

  1. 1. College of Civil Engineering, Hunan University, Changsha, Hunan 410082, China; 2. Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, Hunan University, Changsha, Hunan 410082, China; 3. College of Civil Engineering, Chongqing University, Chongqing 400045, China; 4. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China; 5. China United Engineering Corporation Limited, Hangzhou, Zhejiang 310052, China
  • Received:2021-03-10 Revised:2021-06-24 Online:2021-10-11 Published:2021-10-21
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52078205, 52108299), the Natural Science Foundation of Hunan Province, China (2020JJ3013) and the China Postdoctoral Science Foundation (2021M693740).

Abstract: The dynamic response of geosynthetic reinforced embankment under traffic moving load has attracted increasing attentions in engineering field. A 3D model of geosynthetic reinforced embankment was established by using the ABAQUS finite element software in this paper, which was used to analyze the dynamic stress and deformation of geosynthetic reinforced embankment under moving load. The traffic load was simulated by two moving rectangular plane loads. Fortran subroutine was developed to control the amplitude, range, and speed of the moving load. The equivalent linear viscoelastic model was developed to simulate embankment fill to reflect the viscoelasticity of embankment fill. The geogrid was simulated by T3D2 truss element. The infinite element was used to reduce the boundary effect caused by model size at the boundary. The numerical model of geosynthetic reinforced embankment under moving load was established without considering drainage consolidation. Based on the results of the existing literatures and the results of this paper, the cross-section deformations of the geosynthetic reinforced embankment and the stress at the embankment top surface were compared and verified. The dynamic stress distribution in the longitudinal section and transverse section and the vertical dynamic stress distribution characteristics of the geosynthetic reinforced embankment under moving load were also analyzed. The results showed that the dynamic stress and deformation decayed rapidly within the range of 1.0 m on the embankment top surface and gradually transitioned to an equivalent uniform load with small amplitude. At the same depth, the attenuation coefficient of dynamic stress under the wheel load was the smallest, followed by that at the center of double wheel loads, and the attenuation coefficient at the outer edge of the wheel load was the largest.

Key words: moving load, geosynthetics, reinforced embankment, finite element, dynamic response

CLC Number: 

  • TU 47
[1] ZHAO Shuang, YU Jun, LIU Xin-yuan, HU Zhong-wei. Analytical study on dynamic response of cantilever underground rigid wall [J]. Rock and Soil Mechanics, 2022, 43(1): 152-159.
[2] ZHAO Hai-peng, LI Xue-you, WAN Jian-hong, ZHENG Xiang-zhi, LIU Si-wei, . Analysis of laterally-loaded piles embedded in multi-layered soils using efficient finite-element method [J]. Rock and Soil Mechanics, 2021, 42(7): 1995-2003.
[3] RAO Pei-sen, LI Dan , MENG Qing-shan, WANG Xin-zhi, FU Jin-xin, LEI Xue-wen, . Study on earth pressure distribution characteristics of calcareous sand foundation under cyclic loading [J]. Rock and Soil Mechanics, 2021, 42(6): 1579-1586.
[4] SUN Rui, YANG Jun-sheng, LI Yu-zhe, YANG Feng, LIU Shou-hua. Lower bound finite element limit analysis method based on generalized Hoek-Brown yield criterion [J]. Rock and Soil Mechanics, 2021, 42(6): 1733-1742.
[5] NIU Ting-ting, SUN Guang-chao, . Dynamic response analysis of X-pile-net composite embankment in high-speed railway [J]. Rock and Soil Mechanics, 2021, 42(5): 1266-1280.
[6] LI Yi-cheng, FENG Shi-jin, . Dynamic response of a track coupled with a transversely isotropic ground due to train axle loads [J]. Rock and Soil Mechanics, 2021, 42(5): 1313-1324.
[7] ZHU Sheng, ZHANG Yuan, JIALIBIEKE Ahalibieke, YU Jian-qing, HE Zhao-sheng, . Joint inversion method of instantaneous and creep parameters of rockfill dam based on incremental analysis [J]. Rock and Soil Mechanics, 2021, 42(5): 1453-1461.
[8] LIU Jia, FENG De-luan, . A multi-scale coupling finite element method based on the microscopic soil particle motions [J]. Rock and Soil Mechanics, 2021, 42(4): 1186-1200.
[9] DOU Jin-xi, ZHANG Gui-jin, ZHANG Xi, FAN Wei-zhong, SONG Wei, . Dynamic response analysis of slurry-soil coupling in sandy soil based on pulsating grouting [J]. Rock and Soil Mechanics, 2021, 42(12): 3315-3327.
[10] WEI Kuang-min, CHEN Sheng-shui, MA Hong-yu, LI Guo-ying, MI Zhan-kuan, . A necessary improvement of the viscoelastic method for calculating the dynamic behaviors of the concrete faced rockfill dams [J]. Rock and Soil Mechanics, 2021, 42(12): 3475-3484.
[11] CI Hui-ling, BAI Bing, LEI Hong-wu, CUI Yin-xiang, . A high-precision scheme for field variables in finite element method [J]. Rock and Soil Mechanics, 2021, 42(11): 3137-3146.
[12] SONG Yi-min, LING Xiao-kang, ZHANG Jing-zong, ZHU Chen-li, REN He, YUAN De-shun. Inversion of mechanical parameters of geomaterials based on DSCM-FEM [J]. Rock and Soil Mechanics, 2021, 42(10): 2855-2864.
[13] DAI Xuan, GUO Wang, CHENG Xue-song, HUO Hai-feng, LIU Guo-guang, . Field measurement and numerical analysis for evaluating longitudinal settlement induced by shield tunneling parallel to building [J]. Rock and Soil Mechanics, 2021, 42(1): 233-244.
[14] LIU Quan-sheng, WANG Dong, ZHU Yuan-guang, YANG Zhan-biao, BO Yin. Application of support vector regression algorithm in inversion of geostress field [J]. Rock and Soil Mechanics, 2020, 41(S1): 319-328.
[15] WANG Xiang-nan, HAO Qing-shuo, YU Jia-lin, YU Yu-zhen, LÜ He, . Three-dimensional simulation of the separation of dam panel based on extended finite element method [J]. Rock and Soil Mechanics, 2020, 41(S1): 329-336.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIE Xing-hua, WANG Guo-qing. A study of anti-seepage wall depth in thick overburden dam base[J]. , 2009, 30(9): 2708 -2712 .
[2] SONG Jing,WANG Qing,SUN Tie,LI Xiao-ru,ZHANG Zhong-qiong,JIAO Zhi-liang. Laboratory research on variation mechanism of pore water pressure during stage of dead-weight sludging drainage of dredger fill[J]. , 2010, 31(9): 2935 -2940 .
[3] CHEN Zheng-han, FANG Xiang-wei, ZHU Yuan-qing, QIN Bing, WEI Xue-wen. Research on meso-structures and their evolution laws of expansive soil and loess[J]. , 2009, 30(1): 1 -11 .
[4] XIA Li-nong, LEI Ming, NIE Chong-jun. Field test of influences of load at pile top on negative skin friction behaviors[J]. , 2009, 30(3): 664 -668 .
[5] PAN Peng-zhi, FENG Xia-ting, ZHOU Hui. Failure evolution processes of brittle rocks using 3D cellular automaton method[J]. , 2009, 30(5): 1471 -1476 .
[6] YE Wei-min, HUANG Wei, CHEN Bao, YU Chen1, WANG Ju. Diffuse double layer theory and volume change behavior of densely compacted Gaomiaozi bentonite[J]. , 2009, 30(7): 1899 -1903 .
[7] WANG Ji-liang, CHEN Jian-ping, YANG Jing, QUE Jin-sheng. Method of distance discriminant analysis for determination of classification of rockburst[J]. , 2009, 30(7): 2203 -2208 .
[8] CHEN Ming,LU Wen-bo,ZHOU Chuang-bing,LUO Yi. Influence of initial in-situ stress on blasting-induced cracking zone in tunnel excavation[J]. , 2009, 30(8): 2254 -2258 .
[9] ZHANG Hong , ZHENG Ying-ren , YANG Zhen , WANG Qian-yuan , GE Su-ming. Exploration of design methods of support structure in loess tunnel[J]. , 2009, 30(S2): 473 -478 .
[10] CHEN Jian-gong ,ZHOU Tao-tao ,ZHANG Yong-xing. Shock failure mechanism of zonal disintegration within surrounding rock in deep chamber[J]. , 2011, 32(9): 2629 -2634 .