›› 2012, Vol. 33 ›› Issue (7): 2149-2159.

• Geotechnical Engineering • Previous Articles     Next Articles

Analysis of hydraulic fracturing stress measurement data—discussion of methods frequently used to determine instantaneous shut-in pressure

FENG Cheng-jun1, 2, CHEN Qun-ce1, 2, WU Man-lu1, 2, ZHAO Jin-sheng1, 2, LI Guo-qi1, 2, AN Qi-mei3   

  1. 1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China; 2. Key Laboratory of Neotectonic Movement and Geohazard, Ministry of Land and Resources, Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing100081, China; 3. Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China
  • Received:2011-03-28 Online:2012-07-11 Published:2012-07-13

Abstract: The instantaneous shut-in pressure ( ) is an important parameter in the hydraulic fracturing characteristic parameters. Not only is it assumed to be equal the minor horizontal stress, but also is an important factor to calculate the maximum horizontal stress. The accuracy and reliability of the determination of are directly related to that of the hydraulic fracturing results. The applicability and value features of four methods (the single tangent, dp/dt, lg(p)-t and dT/dP methods) frequently used to determine ps are analyzed combined with three examples of test records. The results reveal that the four methods are lack of general applicability at different forms of pressure records. Therefore, different methods chosen to determine the instantaneous shut-in pressure are various for different pressure records of hydraulic fracturing stress test. Aiming at the hydraulic fracturing segments with intact rock, undeveloped preexisting fissures or joints and compact structure, two or more than two kinds of four methods should be applied to determine the shut-in pressure. The methods of technique of single tangent and dp/dt should be suggested to obtain more reliable value of shut-in pressure directing at hydraulic fracturing segments with incomplete rock, more developed preexisting fissures or joints and incompact structure.

Key words: hydraulic fracturing, stress measurement, instantaneous shut-in pressure

CLC Number: 

  • TU 459
[1] LOU Ye, ZHANG Guang-qing. Experimental analysis of fracturing fluid viscosity on cyclic hydraulic fracturing [J]. Rock and Soil Mechanics, 2019, 40(S1): 109-118.
[2] WANG Chuan-ying, WANG Yi-teng, HAN Zeng-qiang, WANG Jin-chao, ZOU Xian-jian, HU Sheng, . An in-situ stress measurement method based on borehole shape analysis [J]. Rock and Soil Mechanics, 2019, 40(S1): 549-556.
[3] WU Jin-wen, FENG Zi-jun, LIANG Dong, BAO Xian-kai, . Characteristics of granite failure by injecting high-temperature-vapour under uniaxial stress [J]. Rock and Soil Mechanics, 2019, 40(7): 2637-2644.
[4] ZHANG Fan, MA Geng, FENG Dan, . Hydraulic fracturing simulation test and fracture propagation analysis of large-scale coal rock under true triaxial conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1890-1897.
[5] ZHANG Wei, QU Zhan-qing, GUO Tian-kui, SUN Jiang. Numerical simulation of hydraulic fracturing in hot dry rocks under the influence of thermal stress [J]. Rock and Soil Mechanics, 2019, 40(5): 2001-2008.
[6] ZHANG Bo, LI Yao, YANG Xue-ying, ZHU Piao-yang, ZHU Chun-di, LIU Zi-hao, LIU Wen-jie, LUO Zhi-heng, . Design and application of a hydraulic pressure supply device for hydraulic fracturing experiments [J]. Rock and Soil Mechanics, 2019, 40(5): 2022-2028.
[7] XU Chen-yu, BAI Bing, LIU Ming-ze, . Experimental study of the fracture characteristics of granite under CO2 injection condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1474-1482.
[8] WANG Pu, WANG Chen-hu, YANG Ru-hua, HOU Zhen-yang, WANG Hong, . Preliminary investigation on the deep rock stresses prediction method based on stress polygon and focal mechanism solution [J]. Rock and Soil Mechanics, 2019, 40(11): 4486-4496.
[9] LI Dong, LU Yi-yu, RONG Yao, ZHOU Dong-ping, GUO Chen-ye, ZHANG Shang-bin, ZHANG Cheng-ke, . Rapid uncovering seam technologies for large cross-section gas tunnel excavated through coal seams using directional hydraulic fracturing [J]. Rock and Soil Mechanics, 2019, 40(1): 363-369.
[10] LIANG Tian-cheng, LIU Yun-zhi, FU Hai-feng, YAN Yu-zhong, XIU Nai-ling, WANG Zhen. Experimental study of hydraulic fracturing simulation for multistage circulating pump injection [J]. , 2018, 39(S1): 355-361.
[11] LI Dong-qi, LI Zong-li, Lü Cong-cong. Analysis of fracture strength of rock mass considering fissure additional water pressure [J]. , 2018, 39(9): 3174-3180.
[12] CHENG Wan, JIANG Guo-sheng, ZHOU Zhi-dong, WEI Zi-jun, ZHANG Yu, WANG Bing-hong, ZHAO Lin, . Fracture competition of simultaneous propagation of multiple hydraulic fractures in a horizontal well [J]. Rock and Soil Mechanics, 2018, 39(12): 4448-4456.
[13] JIANG Ting-ting, ZHANG Jian-hua, HUANG Gang, . Experimental study of fracture geometry during hydraulic fracturing in coal [J]. , 2018, 39(10): 3677-3684.
[14] ZHONG Shan, JIANG Quan, FENG Xia-ting, LIU Ji-guang, . A case of in-situ stress measurement in Chinese Jinping underground laboratory [J]. , 2018, 39(1): 356-366.
[15] YAN Cheng-zeng. A new two-dimensional FDEM-flow method for simulating hydraulic fracturing [J]. , 2017, 38(6): 1789-1796.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GUAN Yun-fei,GAO Feng,ZHAO Wei-bing,YU Jin. Secondary development of modified Cambridge model in ANSYS software[J]. , 2010, 31(3): 976 -980 .
[2] MI Hai-zhen, GAO Chun. Experimental study of expansive behaviors of quicklime[J]. , 2010, 31(4): 1253 -1256 .
[3] SUN Xi-ping, ZHANG Bao-hua, ZHANG Qiang, WANG Xiao-nan. Stability analysis of gravity quay when rubble bedding was eroded by water flow[J]. , 2010, 31(10): 3184 -3190 .
[4] ZHANG Chun-hui, ZHAO Quan-sheng. Early warning system of mining subsidence damage based on ARCGIS[J]. , 2009, 30(7): 2197 -2202 .
[5] SUN Jian , WANG Lian-guo , TANG Fu-rong , SHEN Yi-feng , GONG Shi-long. Microseismic monitoring failure characteristics of inclined coal seam floor[J]. , 2011, 32(5): 1589 -1595 .
[6] YANG Yong-xiang , ZHOU Jian , JIA Min-cai , HU Jin-hu. Visualization testing on liquefaction properties of saturated sands[J]. , 2011, 32(6): 1643 -1648 .
[7] XU Zheng-ming, XUE Qiang, ZHAO Ying. Research on time effect of modified sludge composites by triaxial tests on mechanical properties[J]. , 2011, 32(6): 1713 -1718 .
[8] CHEN Ming , HU Ying-guo , LU Wen-bo , YAN Peng , ZHOU Chuang-bing. Blasting excavation induced damage characteristics of diversion tunnel for Jinping cascade II hydropower station[J]. , 2011, 32(S2): 172 -177 .
[9] WANG Tao , LI Yang , ZHOU Yong , Lü Qing , LIU Da-wei. Research on safety specific report of phosphogypsum tailings ponds[J]. , 2011, 32(S2): 407 -412 .
[10] QIAO Chun-jiang , CHEN Wei-zhong , WANG Hui , TIAN Hong-ming , TAN Xian-jun. Study of construction method of tunnel in shallow broken rock mass[J]. , 2011, 32(S2): 455 -462 .